The thermal characterization of composites made up by magnetically aligned carbonyl iron micro-sized particles embedded in a polyester resin matrix is performed using photothermal radiometry technique. The measured experimental data show that the thermal conductivity and thermal diffusivity of the composite, in the direction of the applied magnetic field, increase with the concentration of the particles and are enhanced with respect to their corresponding values for a random distribution of the particles. This thermal enhancement has a maximum at a concentration of particles of 10% and is very low at small and high iron volume fractions, such that for particles concentrations of about 40%, the composite thermal conductivity reduces to its values for random particles. This behavior indicates that for high volume fractions, the effect of the microparticles concentration plays a dominant role over the effect of their alignment. It is shown that the thermal conductivity of the composite can be modeled in terms of the Nielsen model, under an appropriate parameterization of the form factor of the particles. The results of this work could be highly useful for improving the thermal performance of mechanical and electronic devices involving composite materials.
We study the quantization of many-body systems in three dimensions in rotating coordinate frames using a gauge invariant formulation of the dynamics. We consider reference frames defined by linear gauge conditions, and discuss their Gribov ambiguities and commutator algebra. We construct the momentum operators, inner-product and Hamiltonian in those gauges, for systems with and without translation invariance. The analogy with the quantization of non-Abelian Yang-Mills theories in noncovariant gauges is emphasized. Our results are applied to quasi-rigid systems in the Eckart frame.
ZnO nanoparticles (NPs) were extracted from a commercial paste in both colloidal and precipitate forms. The Zetasizer analysis performed on the colloid showed ZnO NPs ranging from ∼30 nm to ∼100 nm. Thin films of ZnO were deposited on glass substrates by spin-coating technique from a mixture of the extracted colloid and precipitate. The scanning electron microscope (SEM) images showed uniformly arranged, mesoporous, and nanostructured ZnO particles of different shapes, with an estimated film thickness of 0.67 μm. Analysis by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD) confirmed the presence of ZnO in the films, with no impurities or remnants of other materials. The XRD analysis showed a polycrystalline nature of the films and identified a pure phase formation of the hexagonal wurtzite structure. The average crystallite size calculated from the diffraction peaks is ∼43.25 nm. The calculated crystal tensile strain is 1.954 × 10−3, which increases the crystal volume by 0.728% compared with the crystal volume of standard ZnO. The calculated crystal parameters are a = b = 3.258 Å and c = 5.217 Å. The calculated dislocation density (d) and bond length Zn–O (L) are 5.35 × 10−4 nm−2 and 2.695 Å, respectively. Ultraviolet-visible absorption spectra showed an optical band gap of ∼3.80 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.