This study presents an enhancement in the heat transfer performance of a glass thermosyphon using graphene–acetone nanofluid with 0.05%, 0.07%, and 0.09% volume concentrations. The heat load is varied between 10 and 50 W in five steps. The effect of heat load, volume concentration, and vapor temperature on thermal resistance, evaporator and condenser heat transfer coefficients, are experimentally investigated. A substantial reduction in thermal resistance of 70.3% is observed for the maximum concentration of 0.09% by volume of graphene–acetone nanofluid. Further, an enhancement in the evaporator heat transfer coefficient of 61.25% is observed for the same concentration. Also from the visualization study the different flow patterns in the evaporator, adiabatic, and condenser regions are obtained for acetone at different heat inputs.
Purpose
This paper aims to present an analytical investigation of energy and exergy performance on a solar flat plate collector (SFPC) with Cu-CuO/water hybrid nanofluid, Cu/water and CuO/water nanofluids as collector running fluids.
Design/methodology/approach
Heat transfer characteristics, pressure drop and energy and exergy efficiencies of SFPC working on these nanofluids are investigated and compared. In this study, a comparison is made by varying the mass flow rates and nanoparticle volume concentration. Thermophysical properties of hybrid nanofluids are estimated using distinctive correlations available in the open literature. Then, the influence of these properties on energy and exergy efficiencies of SFPC is discussed in detail.
Findings
Energy analysis reveals that by introducing the hybrid nanoparticles in water, the thermal conductivity of the working fluid is enhanced by 17.52 per cent and that of the individual constituents is enhanced by 15.72 and 15.35 per cent for Cu/water and CuO/water nanofluids, respectively. This resulted in 2.16 per cent improvement in useful heat gain for hybrid nanofluid and 1.03 and 0.91 per cent improvement in heat gain for Cu/water and CuO/water nanofluids, respectively. In line with the above, the collector efficiency increased by 2.175 per cent for the hybrid nanofluid and 0.93 and 1.05 per cent enhancement for Cu/water and CuO/water nanofluids, respectively. Exergy analysis elucidates that by using the hybrid nanofluid, exergy efficiency is increased by 2.59 per cent, whereas it is 2.32 and 2.18 per cent enhancement for Cu/water and CuO/water nanofluids, respectively. Entropy generation is reduced by 3.31, 2.35 and 2.96 per cent for Cu-CuO/water, Cu/water and CuO/water nanofluids, respectively, as compared to water.
Research limitations/implications
However, this is associated with a penalty of increment in pressure drop of 2.92, 3.09 and 2.74 per cent for Cu-CuO/water, Cu/water and CuO/water nanofluids, respectively, compared with water.
Originality/value
It is clear from the analysis that Cu-CuO/water hybrid nanofluids possess notable increment in both energy and exergy efficiencies to use them in SFPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.