Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.
Spindle-shaped nematic droplets (tactoids) form in solutions of rod-like molecules at the onset of the liquid crystalline phase. Their unique shape and internal structure result from the interplay of the elastic deformation of the nematic and anisotropic surface forces. The balance of these forces dictates that tactoids must display a continuous variation in aspect ratio and director-field configuration. Yet, such continuous transition has eluded observation for decades: tactoids have displayed either a bipolar configuration with particles aligned parallel to the droplet interface or a homogeneous configuration with particles aligned parallel to the long axis of the tactoid. Here, we report the first observation of the continuous transition in shape and director-field configuration of tactoids in true solutions of carbon nanotubes in chlorosulfonic acid. This observation is possible because the exceptional length of carbon nanotubes shifts the transition to a size range that can be visualized by optical microscopy. Polarization micrographs yield the interfacial and elastic properties of the system. Absorbance anisotropy measurements provide the highest nematic order parameter (S = 0.79) measured to date for a nematic phase of carbon nanotubes at coexistence with its isotropic phase.
We demonstrate that the length of carbon nanotubes (CNTs) can be determined simply and accurately from extensional viscosity measurements of semidilute CNT solutions. The method is based on measuring the extensional viscosity of CNT solutions in chlorosulfonic acid with a customized capillary thinning rheometer and determining CNT aspect ratio from the theoretical relation between extensional viscosity and aspect ratio in semidilute solutions of rigid rods. We measure CNT diameter d by transmission electron microscopy (TEM) and arrive at CNT length L. By studying samples grown by different methods, we show that the method works well for CNT lengths ranging from 0.4 to at least 20 μm, a wider range than for previous techniques. Moreover, we measure the isotropic-to-nematic transition concentration (i.e., isotropic cloud point) φ iso of CNT solutions and show that this transition follows Onsager-like scaling φ iso ∼ d/L. We characterize the length distributions of CNT samples by combining the measurements of extensional viscosity and transition concentration and show that the resulting length distributions closely match distributions obtained by cryo-TEM measurements. Interestingly, CNTs appear to have relatively low polydispersity compared to polymers and high polydispersity compared to colloidal particles.
Silica nanoparticles with a narrow particle size distribution and controlled diameters of 10-20 nm are synthesized via hydrolysis and hydrothermal aging of tetraethylorthosilicate in an aqueous L-lysine solution. Cryo-transmission electron microscopy (cryo-TEM) reveals that the silica nanoparticles assemble to form close-packed nanoparticle crystals over short length scales on carbon-coated grids. Evaporative drying of the same sols results in nanoparticle stability and remarkable long-range facile ordering of the silica nanoparticles over scales greater than 10 microm. Whereas small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) discount the possibility of a core (silica)-shell (lysine) structure, the possibility remains for lysine occlusion within the silica nanoparticles and concomitant hydrogen bonding effects driving self-assembly. Facile ordering of the silica nanoparticles into multilayer and monolayer coatings over square-centimeter areas by evaporation-induced self-assembly is demonstrated using a novel dip-coating device.
Particles of the zeolite ZSM-2 prepared as nearly hexagonal nanoplatelets were coated onto flat substrates by a convective assembly technique. On the submillimeter scale, coatings ranged in patterns from striped to continuous. Particles were preferentially oriented out-of-plane, as supported by X-ray diffractometry. The novel observation is that where the particle coating was only a monolayer thick, particles were locally close-packed and uniformly oriented both in and out of plane in a hexagonal colloidal crystalline arrangement that may be described as being tiled (observations by scanning electron microscopy). This is the first documented demonstration of convective assembly applied to anisometric nanoparticles that resulted in particulate coatings with locally ordered microstructure, i.e., colloidal crystallinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.