Attention deficit/hyperactivity disorder (ADHD) is a common heritable disorder with a childhood onset. Molecular genetic studies of ADHD have previously focused on examining the roles of specific candidate genes, primarily those involved in dopaminergic pathways. We have performed the first systematic genomewide linkage scan for loci influencing ADHD in 126 affected sib pairs, using a approximately 10-cM grid of microsatellite markers. Allele-sharing linkage methods enabled us to exclude any loci with a lambda(s) of > or =3 from 96% of the genome and those with a lambda(s) of > or =2.5 from 91%, indicating that there is unlikely to be a major gene involved in ADHD susceptibility in our sample. Under a strict diagnostic scheme we could exclude all screened regions of the X chromosome for a locus-specific lambda(s) of >/=2 in brother-brother pairs, demonstrating that the excess of affected males with ADHD is probably not attributable to a major X-linked effect. Qualitative trait maximum LOD score analyses pointed to a number of chromosomal sites that may contain genetic risk factors of moderate effect. None exceeded genomewide significance thresholds, but LOD scores were >1.5 for regions on 5p12, 10q26, 12q23, and 16p13. Quantitative-trait analysis of ADHD symptom counts implicated a region on 12p13 (maximum LOD 2.6) that also yielded a LOD >1 when qualitative methods were used. A survey of regions containing 36 genes that have been proposed as candidates for ADHD indicated that 29 of these genes, including DRD4 and DAT1, could be excluded for a lambda(s) of 2. Only three of the candidates-DRD5, 5HTT, and CALCYON-coincided with sites of positive linkage identified by our screen. Two of the regions highlighted in the present study, 2q24 and 16p13, coincided with the top linkage peaks reported by a recent genome-scan study of autistic sib pairs.
Attention deficit hyperactivity disorder (ADHD) is a common neurobehavioral problem afflicting 5-10% of children and adolescents and persisting into adulthood in 30-50% or more of cases.1,2 Family, twin, and adoption studies suggest genetic factors contribute to ADHD and symptoms of inattention, impulsivity, and hyperactivity.3-5 Because stimulant intervention is effective in reducing ADHD symptoms in about 70-80% of cases, molecular genetic investigations of genes involved in dopamine regulation are currently underway by many groups.6-8 In a case control study of the dopamine D4 receptor gene (DRD4) and ADHD, La Hoste and colleagues 9 found an increase of a 7-repeat variant of a 48-bp VNTR in exon 3 10 among ADHD subjects compared to controls. Swanson and colleagues 11 replicated this finding in a sample of 52 ADHD probands and their biological parents using a haplotype relative risk analysis. Here, we describe linkage investigations of the VNTR and ADHD in affected sibling pair (ASP) families and singleton families using both the transmission disequilibrium test (TDT)12 and a mean test of identity-bydescent (IBD) sharing. Using the TDT in the total sample, the 7 allele is differentially transmitted to ADHD children (P = 0.03) while the mean test revealed no evidence of increased IBD sharing among ASPs. In the current sample, the 7 allele attributes a 1.5-fold risk for developing ADHD over non-carriers of the allele estimated under a model described by Risch and Merikangas.13
Biological mechanisms that involve gene-by-environment interactions have been hypothesized to explain susceptibility to complex familial disorders. Current research provides compelling evidence that one environmental factor, which acts prenatally to increase susceptibility, arises from a maternal-fetal genotype incompatibility. Because it is genetic in origin, a maternal-fetal incompatibility is one possible source of an adverse environment that can be detected in genetic analyses and precisely studied, even years after the adverse environment was present. Existing statistical models and tests for gene detection are not optimal or even appropriate for identifying maternal-fetal genotype incompatibility loci that may increase the risk for complex disorders. We describe a new test, the maternal-fetal genotype incompatibility (MFG) test, that can be used with case-parent triad data (affected individuals and their parents) to identify loci for which a maternal-fetal genotype incompatibility increases the risk for disease. The MFG test adapts a log-linear approach for case-parent triads in order to detect maternal-fetal genotype incompatibility at a candidate locus, and allows the incompatibility effects to be estimated separately from direct effects of either the maternal or the child's genotype. Through simulations of two biologically plausible maternal-fetal genotype incompatibility scenarios, we show that the type-I error rate of the MFG test is appropriate, that the estimated parameters are accurate, and that the test is powerful enough to detect a maternal-fetal genotype incompatibility of moderate effect size.
Fetal events and obstetric complications are associated with schizophrenia. Here we report the results of a family-based candidate-gene study that assesses the role of maternal-fetal genotype incompatibility at the RHD locus in schizophrenia. We adapted the case-parent-trio log-linear modeling approach to test for RHD maternal-fetal genotype incompatibility and to distinguish this effect from a high-risk allele at or near the RHD locus and from a direct maternal effect alone. Eighty-eight patient-parent trios, 72 patient-mother pairs, and 21 patient-father pairs were genotyped at the RHD locus. Of the 181 patients, 62% were male and 81% were second born or later. Only three patients were born after prophylaxis against maternal isoimmunization had become common practice. There was significant evidence for an RHD maternal-fetal genotype incompatibility, and the incompatibility parameter was estimated at 2.6. There was no evidence to support linkage/association with schizophrenia at or near the RHD locus nor any evidence to support the role of maternal genotype effect alone. Our results replicate previous findings that implicate the RHD locus in schizophrenia, and the candidate-gene design of this study allows the elimination of alternative explanations for the role of this locus in disease. Thus, the present study provides increasing evidence that the RHD locus increases schizophrenia risk through a maternal-fetal genotype incompatibility mechanism that increases risk of an adverse prenatal environment (e.g., Rh incompatibility) rather than through linkage/association with the disorder, linkage disequilibrium with an unknown nearby susceptibility locus, or a direct maternal effect alone. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.