A theoretical treatment has been developed for the optical properties of a layered structure which absorbs and scatters light. This theory predicts that the logarithm of the inverse of reflectance (LIR) of the surface should be a useful parameter for the examination of that structure. This approach has been applied to a study of skin in vivo. An instrument was constructed for use in clinical situations to measure the LIR spectrum of skin over the visible region of the spectrum (450-760 nm). The contributions to the observed spectra made by pigments and the skin structure were deduced by reference to the theoretical model. Numerical indices were used to quantify the changes in skin haemoglobin content following the application of vasoconstricting preparations. The indices also provided a means of measuring erythema and melanin pigmentation induced in the skin by exposure to ultraviolet radiation. The assessments made using this instrument were more reproducible and sensitive than judgments made by eye.
Long (>50km) normal faults bound one or both sides of narrow basins within the East African Rift System, but the dimensions and internal geometry of individual basins vary along its length. We examine basins in N Tanzania that developed in Archaean and Late Proterozoic (Pan-African) crust, and the relationship of Neogene-Recent faulting and volcanism to pre-existing lithospheric structure. In northern Tanzania the
c
. 50 km-wide Eastern (Gregory) Rift splays into three seismically active arms, with active extension distributed across a 200 km wide zone. We use new gravity and aeromagnetic data, and existing seismic, gravity, heat flow, and geochemical data to model lithospheric structure beneath the Archaean craton and Proterozoic orogenic belts, and its influence on rift development in N Tanzania. Depths to source bodies determined from Euler deconvolution of aeromagnetic data (1 km grid) indicate that
c
. 40 km wide basins are less than 3.5 km deep, with basin depths decreasing to the south, consistent with depths estimated from gravity anomalies. Asymmetric basins in the Archaean and zone of reworked Archaean and Proterozoic nappes are bounded by unusually long (100 km) border faults associated with seismicity to depths >25 km. Estimates of flexural rigidity, or effective elastic thickness
(TJ,
suggest that the lithosphere beneath the Tanzania craton, including the western rift arm, is stronger (64 ± 5 km) than that beneath the Proterozoic belt and the transition zone (30 ± 4 km), with the lowest
T
e
values found beneath the central rift arm (23
+2
4
km). Heat flow, seismicity, and mantle xenolith data also indicate that the lithosphere beneath the Archaean craton was and is colder and stronger than the post-Archaean lithosphere. Geophysical and geochemical data suggest that (a) pre-existing heterogeneities in the Archaean crust influenced the orientation of border faults bounding basins, and (b) that topography at the base of the lithosphere guided the location of rifting in Tanzania, producing a broader rift zone. These results indicate the persistence of a deep cratonic root despite the impingement of a mantle plume in Cenozoic time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.