A range of 11 simple aromatic lignin derivatives are biodegradable to methane and carbon dioxide under strict anaerobic conditions. A serum-bottle modification of the Hungate technique for growing anaerobes was used for methanogenic enrichments on vanillin, vanillic acid, ferulic acid, cinnamic acid, benzoic acid, catechol, protocatechuic acid, phenol, p-hydroxybenzoic acid, syringic acid, and syringaldehyde. Microbial populations acclimated to a particular aromatic substrate can be simultaneously acclimated to other selected aromatic substrates. Carbon balance measurements made on vanillic and ferulic acids indicate that the aromatic ring was cleaved and that the amount of methane produced from these substrates closely agrees with calculated stoichiometric values. These data suggest that more than half of the organic carbon of these aromatic compounds potentially can be converted to methane gas and that this type of methanogenic conversion of simple aromatics may not be uncommon.
Ferulic acid, a model lignin derivative, was observed to be biodegradable to methane and carbon dioxide under strict anaerobic conditions. This conversion appears to be carried out by a consortium of bacteria similar to that previously described for the methanogenic degradation of benzoic acid. A temporary buildup of acetate in these cultures indicates that it is a likely intermediate and precursor for methane formation. An analog of coenzyme M, 2-bromoethanesulfonic acid (BESA), inhibited gas production and enhanced the buildup of propionate, butyrate, isobutyrate, and isovalerate. Phenylacetate, cinnamate, 3-phenylpropionate, benzoate, cyclohexane carboxylate, adipate, and pimelate were also detected in BESA-inhibited cultures. A pathway is proposed which includes these various acids as possible intermediates in the methanogenic degradation of ferulic acid. This model overlaps previously described benzoic acid degradation pathways, suggesting that this type of anaerobic degradation may be common for aromatic compounds.
An anaerobic population of bacteria became acclimated to catechol and phenol in 32 and 18 days, respectively. Evidence from carbon balance measurements indicates that the aromatic ring is cleaved and that the products are stoichiometrically fermentable to methane and carbon dioxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.