A wide range of proteins belonging to the SCP/TAPS "family" has been described for various eukaryotic organisms, including plants and animals (vertebrates and invertebrates, such as helminths). Although SCP/TAPS proteins have been proposed to play key roles in a number of fundamental biological processes, such as host-pathogen interactions and defence mechanisms, there is a paucity of information on their genetic relationships, structures and functions, and there is no standardised nomenclature for these proteins. A detailed analysis of the relationships of members of the SCP/TAPS family of proteins, based on key protein signatures, could provide a foundation for investigating these areas. In this article, we review the current state of knowledge of key SCP/TAPS proteins of eukaryotes, with an emphasis on those from parasitic helminths, and undertake a comprehensive, systematic phylogenetic analysis of currently available full-length protein sequence data (considering characteristic protein signatures or motifs) to infer relationships and provide a framework (based on statistical support) for the naming of these proteins. This framework is intended to guide genomic and molecular biological explorations of key SCP/TAPS molecules associated with infectious diseases of plants and animals. In particular, fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new and innovative approaches for the control of parasitic diseases, with important biotechnological outcomes.
Infection of humans and livestock with parasitic nematodes can have devastating effects on health and production, affecting food security in both developed and developing regions. Despite decades of research, the development of recombinant sub-unit vaccines against these pathogens has been largely unsuccessful. We have developed a strategy to identify protective antigens from Teladorsagia circumcincta, the major pathogen causing parasitic gastroenteritis in small ruminants in temperate regions, by studying IgA responses directed at proteins specific to post-infective larvae. Antigens were also selected on the basis of their potential immunomodulatory role at the host/parasite interface. Recombinant versions of eight molecules identified by immunoproteomics, homology with vaccine candidates in other nematodes and/or with potential immunoregulatory activities, were therefore administered to sheep in a single vaccine formulation. The vaccine was administered three times with Quil A adjuvant and the animals subsequently subjected to a repeated challenge infection designed to mimic field conditions. Levels of protection in the vaccinates were compared to those obtained in sheep administered with Quil A alone. The trial was performed on two occasions. In both trials, vaccinates had significantly lower mean fecal worm egg counts (FWECs) over the sampling period, with a mean reduction in egg output of 70% (Trial 1) and 58% (Trial 2). During the period of peak worm egg shedding, vaccinates shed 92% and 73% fewer eggs than did controls in Trials 1 and 2, respectively. At post mortem, vaccinates had 75% (Trial 1) and 56% (Trial 2) lower adult nematode burdens than the controls. These levels of protection are the highest observed in any system using a nematode recombinant sub-unit vaccine in the definitive ruminant host and indicate that control of parasitic helminths via vaccination with recombinant subunit vaccine cocktails is indeed an alternative option in the face of multi-drug resistance.
The challenge now is to convince stud owners/managers to deviate from their current practices to control strategies that are more likely to preserve anthelmintic efficacy. Veterinarians need to get more involved in implementing these control strategies, with better emphasis placed on the role of diagnostic tests in facilitating targeted treatments and in investigating anthelmintic sensitivity in the associated nematode populations.
Few studies have described the combined effect of age, gender, management and control programmes on helminth prevalence and egg shedding in grazing equines. Here, fecal samples collected from 1221 Thoroughbred horses, residing at 22 studs in the UK, were analysed. The distribution of strongyle eggs amongst individuals in relation to age, gender and management practices was investigated. Fecal worm egg counts (FWECs), described as the number of eggs per gramme (epg) of feces, were determined using a modification of the salt flotation method. The FWEC prevalence (mean%) of strongyles, Parascaris equorum, tapeworm spp. and Strongyloides westeri was 56, 9, 4 and 8%, respectively. Strongyle, P. equorum, tapeworm spp. and S. westeri infections were detected on 22 (100%), 11 (50%), 9 (41%) and 8 (36%) of studs, respectively. Within all age and gender categories, strongyle FWECs were highly over-dispersed (arithmetic mean = 95 epg, aggregation parameter k=0·111) amongst horses. Animal age, last anthelmintic type administered and management practices (for example, group rotation on grazing) most strongly influenced strongyle prevalence and level of egg shedding (P < 0·05). Overall, 11% of equines (range: 234-2565 epg) were responsible for excreting 80% of the strongyle eggs detected on FWEC analysis. The results confirm that the judicious application of targeted treatments has potential to control equine strongyle populations by protecting individual horses from high burdens, whilst promoting refugia for anthelmintic susceptible genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.