Infection of humans and livestock with parasitic nematodes can have devastating effects on health and production, affecting food security in both developed and developing regions. Despite decades of research, the development of recombinant sub-unit vaccines against these pathogens has been largely unsuccessful. We have developed a strategy to identify protective antigens from Teladorsagia circumcincta, the major pathogen causing parasitic gastroenteritis in small ruminants in temperate regions, by studying IgA responses directed at proteins specific to post-infective larvae. Antigens were also selected on the basis of their potential immunomodulatory role at the host/parasite interface. Recombinant versions of eight molecules identified by immunoproteomics, homology with vaccine candidates in other nematodes and/or with potential immunoregulatory activities, were therefore administered to sheep in a single vaccine formulation. The vaccine was administered three times with Quil A adjuvant and the animals subsequently subjected to a repeated challenge infection designed to mimic field conditions. Levels of protection in the vaccinates were compared to those obtained in sheep administered with Quil A alone. The trial was performed on two occasions. In both trials, vaccinates had significantly lower mean fecal worm egg counts (FWECs) over the sampling period, with a mean reduction in egg output of 70% (Trial 1) and 58% (Trial 2). During the period of peak worm egg shedding, vaccinates shed 92% and 73% fewer eggs than did controls in Trials 1 and 2, respectively. At post mortem, vaccinates had 75% (Trial 1) and 56% (Trial 2) lower adult nematode burdens than the controls. These levels of protection are the highest observed in any system using a nematode recombinant sub-unit vaccine in the definitive ruminant host and indicate that control of parasitic helminths via vaccination with recombinant subunit vaccine cocktails is indeed an alternative option in the face of multi-drug resistance.
A macrophage migration inhibitory factor (MIF)-like molecule, Tci-MIF-1, was isolated from Teladorsagia circumcincta and subjected to detailed characterization. A cDNA representing Tci-mif-1 was isolated following its identification in third-stage larvae (L3)-enriched cDNA population. Sequencing of the cDNA indicated a 348-bp open reading frame (ORF) with the closest orthologue being a MIF derived from the human hookworm Ancylostoma ceylanicum. Messenger RNA (mRNA) representing the Tci-MIF-1 transcript was detected in eggs, L3 and adult stages of T. circumcincta. The transcript was also present, but to a lesser extent in fourth-stage larvae (L4). Detection of Tci-MIF-1 protein in T. circumcincta developmental stages reflected the transcript levels identified by reverse transcriptase-PCR. Using immunohistochemistry, the Tci-MIF-1 protein was shown to have a diffuse distribution in L3 tissue, and in L4 and adult stages, the protein was localized to the nematode gut. A recombinant version of Tci-MIF-1 was produced, and enzymic assays indicated that this recombinant protein and a somatic extract of L3 possessed dopachrome tautomerase activity as has been observed previously in other MIF-like molecules. Neither native, purified Tci-MIF nor recombinant Tci-MIF-1 dramatically influenced the in vitro migration of sheep monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.