Silver nanoparticles (Ag NPs) were chemically deposited on silicon nanowires (SiNWs), prepared using the vapor-liquid-solid (VLS) growth mechanism, using an in situ electroless metal deposition technique. The resulting SiNWs/Ag NPs composite interfaces showed large Raman scattering enhancement for rhodamine 6G (R6G) with a detection limit of 10(-14) M and an enhancement factor of 2.3 x 10(8). This large enhancement factor was attributed to the presence of "hot" spots on the SiNWs/Ag NPs substrate.
In this work, quantitative electron probe X-ray microanalysis (EPMA) and Raman microspectrometry (RMS) were applied in combination for the first time to characterize the complex internal structure and physicochemical properties of the same ensemble of Asian dust particles. The analytical methodology to obtain the chemical composition, mixing state, and spatial distribution of chemical species within single particles through the combined use of the two techniques is described. Asian dust aerosol particles collected in Incheon, Korea, during a moderate dust storm event were examined to assess the applicability of the methodology to resolve internal mixtures within single particles. Among 92 individual analyzed particles, EPMA and RMS identified 53% of the particles to be internally mixed with two or more chemical species. Information on the spatial distribution of chemical compounds within internally mixed individual particles can be useful for deciphering the particle aging mechanisms and sources. This study demonstrates that the characterization of individual particles, including chemical speciation and mixing state analysis, can be performed more in detail using EPMA and RMS in combination than with the two single-particle techniques alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.