The U.S. Environmental Protection Agency banned the use of polychlorinated biphenyls (PCBs) in 1979, due to the high environmental and public health risks with which they are associated. However, PCBs continue to persist in the San Francisco Bay (SFB), often at concentrations deemed unsafe for humans. In situ PCB monitoring within the SFB is extremely limited, due in large part to the high monetary costs associated with sampling. Here we offer a cost effective alternative to in situ PCB monitoring by demonstrating the feasibility of indirectly quantifying PCBs in the SFB via satellite remote sensing using a two-step approach. First, we determined the relationship between in situ PCB concentrations and suspended sediment concentrations (SSC) in the SFB. We then correlated in situ SSC with spatially and temporally consistent Landsat 8 and Sentinel 2A reflectances. We demonstrate strong relationships between SSC and PCBs in all three SFB sub-embayments (R2 > 0.28–0.80, p < 0.01), as well as a robust relationship between SSC and satellite measurements for both Landsat 8 and Sentinel 2A (R2 > 0.72, p < 0.01). These relationships held regardless of the atmospheric correction regime that we applied. The end product of these relationships is an empirical two-step relationship capable of deriving PCBs from satellite imagery. Our approach of estimating PCBs in the SFB by remotely sensing SSC is extremely cost-effective when compared to traditional in situ techniques. Moreover, it can also be utilized to generate PCB concentration maps for the SFB. These maps could one day serve as an important tool for PCB remediation in the SFB, as they can provide valuable insight into the spatial distribution of PCBs throughout the bay, as well as how this distribution changes over time.
Next-generation satellite sensors such as the Ocean Color Instrument (OCI) aboard the NASA Plankton, Aerosols, Cloud and ocean Ecosystem (PACE) satellite and the proposed Surface Biology and Geology (SBG) sensor will provide hyperspectral measurements of water-leaving radiances. However, acquiring sufficiently accurate in situ validation data in coastal ecosystems remains challenging. Here we modeled hyperspectral normalized water-leaving radiance ([L W (λ)] N ) in a dynamic coastal ecosystem using in situ inherent optical properties (IOPs) as inputs to the Hydrolight radiative transfer model. By reducing uncertainty of modeled hyperspectral [L W (λ)] N (%RMSE ≤ 21%) relative to [L W (λ)] N derived from in situ radiometric measurements (%RMSE ≤ 33%), we introduce modeling as an alternative or complementary method to in-water radiometric profilers for validating satellite-derived hyperspectral data from coastal ecosystems.
COVID-19's impact on society and our daily habits has been unprecedented. With a decrease in vehicular traffic and industrial production, a decrease in local emissions was expected to occur. In order to capture any trends in ambient trace gas concentrations, approximately one thousand whole air samples were collected in intervals across the United States from April to July 2020 as part of the NASA Student Airborne Research Program (SARP). These samples were then analyzed by the UCI Rowland-Blake Lab using multi-column gas chromatography for over one hundred unique trace gases, including methane, non-methane hydrocarbons, and halocarbons, as described in Colman et al. (2001) and Barletta et al. (2002). Initial samples collected in April coincided with the peak of stay-at-home/social distancing orders in most states while samples collected later in the spring and early summer reflect the easing of these measures and initial state reopenings. Overall trends in emissions over time in select metropolitan areas will be discussed and compared to trends observed across the entire United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.