Inspired in the Standard Model of Elementary Particles, the Einstein Yang-Mills Higgs action with the Higgs field in the SU(2) representation was proposed in Class. Quantum Grav. 32 (2015) 045002 as the element responsible for the dark energy phenomenon. We revisit this action emphasizing in a very important aspect not sufficiently explored in the original work and that substantially changes its conclusions. This aspect is the role that the Yang-Mills Higgs interaction plays at fixing the gauge for the Higgs field, in order to sustain a homogeneous and isotropic background, and at driving the late accelerated expansion of the Universe by moving the Higgs field away of the minimum of its potential and holding it towards an asymptotic finite value. We analyse the dynamical behaviour of this system and supplement this analysis with a numerical solution whose initial conditions are in agreement with the current observed values for the density parameters. This scenario represents a step towards a successful merging of cosmology and well-tested particle physics phenomenology.PACS numbers: 98.80.Cq; 95.36.+x
In the context of the dark energy scenario, the Einstein Yang-Mills Higgs model in the SO(3) representation was studied for the first time by M. Rinaldi (see [24]) in a homogeneous and isotropic spacetime. We revisit this model, finding in particular that the interaction between the Higgs field and the gauge fields generates contributions to the momentum density, anisotropic stress and pressures, thus making the model inconsistent with the assumed background. We instead consider a homogeneous but anisotropic Bianchi-I space-time background in this paper and analyze the corresponding dynamical behaviour of the system. We find that the only attractor point corresponds to an isotropic accelerated expansion dominated by the Higgs potential. However, the model predicts non-negligible anisotropic shear contributions nowadays, i.e. the current Universe can have hair although it will loose it in the future. We investigate the evolution of the equation of state for dark energy and highlight some possible consequences of its behaviour related to the process of large-scale structure formation. As a supplement, we propose the "Higgs triad " as a possibility to make the Einstein Yang-Mills Higgs model be consistent with a homogeneous and isotropic spacetime.
In this paper we study some models where non-Abelian gauge vector fields endowed with a SU(2) group representation are the unique source of inflation and dark energy. These models were first introduced under the name of gaugeflation and gaugessence, respectively. Although several realizations of these models have been discussed, not all available parameters and initial conditions are known. In this work, we use a dynamical system approach to find the full parameter space of the massive version of each model. In particular, we found that the inclusion of the mass term increases the length of the inflationary period. Additionally, the mass term implies new behaviours for the equation of state of dark energy allowing to distinguish this from other prototypical models of accelerated expansion. We show that an axially symmetric gauge field can support an anisotropic accelerated expansion within the observational bounds.
We consider scalar-vector-tensor (SVT) theories with second-order equations of motion and tensor propagation speed equivalent to the speed of light. Under the sub-horizon and the quasi-static approximations we find analytical formulae for an effective dark energy fluid, i.e., sound speed, anisotropic stress as well as energy density and pressure. We took advantage of our general, analytical fluid description and showed that it is possible to design SVT cosmological models which are degenerate with ΛCDM at the background level while having gravity strength G eff < G N at late-times as well as non-vanishing dark energy perturbations. We implemented SVT designer models in the widely used Boltzmann solver CLASS thus making it possible to test SVT models against astrophysical observations. Our effective fluid approach to SVT models reveals non trivial behaviour in the sound speed and the anisotropic stress well worth an investigation in light of current discrepancies in cosmological parameters such as H 0 and σ 8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.