To develop and implement an automated plan check (APC) tool using a Six Sigma methodology with the aim of improving safety and efficiency in external beam radiotherapy. Methods: The Six Sigma define-measure-analyze-improve-control (DMAIC) framework was used by measuring defects stemming from treatment planning that were reported to the departmental incidence learning system (ILS). The common error pathways observed in the reported data were combined with our departmental physics plan check list, and AAPM TG-275 identified items. Prioritized by risk priority number (RPN) and severity values, the check items were added to the APC tool developed using Varian Eclipse Scripting Application Programming Interface (ESAPI). At 9 months post-APC implementation, the tool encompassed 89 check items, and its effectiveness was evaluated by comparing RPN values and rates of reported errors. To test the efficiency gains, physics plan check time and reported error rate were prospectively compared for 20 treatment plans. Results: The APC tool was successfully implemented for external beam plan checking. FMEA RPN ranking re-evaluation at 9 months post-APC demonstrated a statistically significant average decrease in RPN values from 129.2 to 83.7 (P < .05). After the introduction of APC, the average frequency of reported treatment-planning errors was reduced from 16.1% to 4.1%. For high-severity errors, the reduction was 82.7% for prescription/plan mismatches and 84.4% for incorrect shift note. The process shifted from 4σ to 5σ quality for isocenter-shift errors. The efficiency study showed a statistically significant decrease in plan check time (10.1 ± 7.3 min, P = .005) and decrease in errors propagating to physics plan check (80%). Conclusions: Incorporation of APC tool has significantly reduced the error rate. The DMAIC framework can provide an iterative and robust workflow to improve the efficiency and quality of treatment planning procedure enabling a safer radiotherapy process.
Perspective taking had no significant influence on CS, STS nor BOS. Conclusion: The PRO BONO study provided an overview on BOS, alexithymia and empathy among radiation oncologists. Alexithymic personality trait increased the likelihood to have BOS, with less professional satisfaction. Empathic concern was associated to increased level of stress (STS), but did not lead to BOS, resulting in higher professional fulfillment. Conversely, personal distress was associated to increased STS and BOS.
BackgroundIndependent auditing is a necessary component of a comprehensive quality assurance (QA) program and can also be utilized for continuous quality improvement (QI) in various radiotherapy processes. Two senior physicists at our institution have been performing a time intensive manual audit of cross‐campus treatment plans annually, with the aim of further standardizing our planning procedures, updating policies and guidelines, and providing training opportunities of all staff members.PurposeA knowledge‐based automated anomaly‐detection algorithm to provide decision support and strengthen our manual retrospective plan auditing process was developed. This standardized and improved the efficiency of the assessment of our external beam radiotherapy (EBRT) treatment planning across all eight campuses of our institution.MethodsA total of 843 external beam radiotherapy plans for 721 lung patients from January 2020 to March 2021 were automatically acquired from our clinical treatment planning and management systems. From each plan, 44 parameters were automatically extracted and pre‐processed. A knowledge‐based anomaly detection algorithm, namely, “isolation forest” (iForest), was then applied to the plan dataset. An anomaly score was determined for each plan using recursive partitioning mechanism. Top 20 plans ranked with the highest anomaly scores for each treatment technique (2D/3D/IMRT/VMAT/SBRT) including auto‐populated parameters were used to guide the manual auditing process and validated by two plan auditors.ResultsThe two auditors verified that 75.6% plans with the highest iForest anomaly scores have similar concerning qualities that may lead to actionable recommendations for our planning procedures and staff training materials. The time to audit a chart was approximately 20.8 min on average when done manually and 14.0 min when done with the iForest guidance. Approximately 6.8 min were saved per chart with the iForest method. For our typical internal audit review of 250 charts annually, the total time savings are approximately 30 hr per year.ConclusioniForest effectively detects anomalous plans and strengthens our cross‐campus manual plan auditing procedure by adding decision support and further improve standardization. Due to the use of automation, this method was efficient and will be used to establish a standard plan auditing procedure, which could occur more frequently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.