The objective of this research is to characterise the material poly lactic acid (PLA), printed by fused deposition modelling (FDM) technology, under three loading conditions—tension, compression and bending—in order to get data that will allow to simulate structural components. In the absence of specific standards for materials manufactured in FDM technology, characterisation is carried out based on ASTM International standards D638, D695 and D790, respectively. Samples manufactured with the same printing parameters have been built and tested; and the tensile, compressive and flexural properties have been determined. The influences of the cross-sectional shape and the specimen length on the strength and elastic modulus of compression are addressed. By analysing the mechanical properties obtained in this way, the conclusion is that they are different, are not coherent with each other, and do not reflect the bimodular nature (different behaviour of material in tension and compression) of this material. A finite element (FE) model is used to verify these differences, including geometric non-linearity, to realistically reproduce conditions during physical tests. The main conclusion is that the test methods currently used do not guarantee a coherent set of mechanical properties useful for numerical simulation, which highlights the need to define new characterisation methods better adapted to the behaviour of FDM-printed PLA.
Mask image projection is an additive manufacturing (AM) technique used in photocurable materials which allows the simultaneous energy delivery in a whole area instead of a single spot. A common problem for this AM process is the uncontrolled penetration of light energy, which could cause a solidification of non - desired layers. In this paper , an optimization procedure is developed and presented in order to increase Z accuracy and resolution of printed parts through the control of the total accumulated dose and the photocuring conversion ratio of each spatial location of the manufacturing volu me. Consequently, the uncontrolled monomer - to - polymer conversion of down - facing surfaces could be reduced. A finite element strategy is used in the optimisation procedure to obtain a full discretization of the whole manufacturing domain. Furthermore, exper imental tests have been done to compare experimental results and numerical estimations. The results show that the use of the optimisation procedure increases the accuracy and resolution of printed parts along the manufacturing direction.Peer ReviewedPostprint (author's final draft
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.