We present a neural network based calibration method that performs the calibration task within a few milliseconds for the full implied volatility surface. The framework is consistently applicable throughout a range of volatility models-including the rough volatility family-and a range of derivative contracts. The aim of neural networks in this work is an off-line approximation of complex pricing functions, which are difficult to represent or time-consuming to evaluate by other means. We highlight how this perspective opens new horizons for quantitative modelling: The calibration bottleneck posed by a slow pricing of derivative contracts is lifted. This brings several numerical pricers and model families (such as rough volatility models) within the scope of applicability in industry practice. The form in which information from available data is extracted and stored influences network performance. This approach is inspired by representing the implied volatility and option prices as a collection of pixels. In a number of applications we demonstrate the prowess of this modelling approach regarding accuracy, speed, robustness and generality and also its potentials towards model recognition.
Abstract. The rough Bergomi model introduced by Bayer, Friz and Gatheral [3] has been outperforming conventional Markovian stochastic volatility models by reproducing implied volatility smiles in a very realistic manner, in particular for short maturities. We investigate here the dynamics of the VIX and the forward variance curve generated by this model, and develop efficient pricing algorithms for VIX futures and options. We further analyse the validity of the rough Bergomi model to jointly describe the VIX and the SPX, and present a joint calibration algorithm based on the hybrid scheme by Bennedsen, Lunde and Pakkanen [4].
We extend Donsker's approximation of Brownian motion to fractional Brownian motion with Hurst exponent H ∈ (0, 1) and to Volterra-like processes. Some of the most relevant consequences of this 'rough Donsker (rDonsker) Theorem' are convergence results for discrete approximations of a large class of rough models. This justifies the validity of simple and easy-to-implement Monte-Carlo methods, for which we provide detailed numerical recipes. We test these against the current benchmark Hybrid scheme [11] and find remarkable agreement (for a large range of values of H). This rDonsker Theorem further provides a weak convergence proof for the Hybrid scheme itself, and allows to construct binomial trees for rough volatility models, the first available scheme (in the rough volatility context) for early exercise options such as American or Bermudan.Date: May 7, 2019.2010 Mathematics Subject Classification. 60F17, 60F05, 60G15, 60G22, 91G20, 91G60, 91B25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.