We consider rough stochastic volatility models where the driving noise of volatility has fractional scaling, in the "rough" regime of Hurst parameter H < 1/2. This regime recently attracted a lot of attention both from the statistical and option pricing point of view. With focus on the latter, we sharpen the large deviation results of Forde-Zhang (2017) in a way that allows us to zoom-in around the money while maintaining full analytical tractability. More precisely, this amounts to proving higher order moderate deviation estimates, only recently introduced in the option pricing context. This in turn allows us to push the applicability range of known at-the-money skew approximation formulae from CLT type log-moneyness deviations of order t 1/2 (recent works of Alòs, León & Vives and Fukasawa) to the wider moderate deviations regime.
We present a neural network based calibration method that performs the calibration task within a few milliseconds for the full implied volatility surface. The framework is consistently applicable throughout a range of volatility models-including the rough volatility family-and a range of derivative contracts. The aim of neural networks in this work is an off-line approximation of complex pricing functions, which are difficult to represent or time-consuming to evaluate by other means. We highlight how this perspective opens new horizons for quantitative modelling: The calibration bottleneck posed by a slow pricing of derivative contracts is lifted. This brings several numerical pricers and model families (such as rough volatility models) within the scope of applicability in industry practice. The form in which information from available data is extracted and stored influences network performance. This approach is inspired by representing the implied volatility and option prices as a collection of pixels. In a number of applications we demonstrate the prowess of this modelling approach regarding accuracy, speed, robustness and generality and also its potentials towards model recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.