Arrays of ultraviolet–violet (indium tin oxide)/[copper phthalocyanine (CuPc)]/[4,4′-bis(9-carbazolyl)biphenyl (CBP)]/[2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4oxadiazole (Bu-PBD)]/CsF/Al organic light-emitting devices, fabricated combinatorially using a sliding shutter technique, are described. Comparison of the OLED electroluminescence and CBP photoluminescence spectra indicates that the emission originates from the bulk of that layer. In arrays of devices in which the thickness of the CuPc and Bu–PBD were varied, but that of CBP was fixed at 50 nm, the optimal radiance R was obtained at CuPc and Bu–PBD thicknesses of 15 and 18 nm, respectively. At 10 mA/cm2, R was 0.38 mW/cm2, i.e., the external quantum efficiency was 1.25%; R increased to ∼1.2 mW/cm2 at 100 mA/cm2.
Nanocrystalline Ge and its alloys with C are potentially useful materials for solar cells, thin film transistors and image sensors. In this paper, we discuss the growth and properties of these materials using remote, low pressure ECR plasma deposition. The materials and devices were grown from mixtures of germane, methane and hydrogen. It was found that high hydrogen dilutions (>40:1) were needed to crystallize the films. Studies of x-ray spectra revealed that the grains were primarily <220> oriented. The grain size was a strong function of hydrogen dilution and growth temperature. Higher growth temperatures resulted in larger grain size. High hydrogen dilution tended to reduce grain size. These results can be explained by recognizing that excessive amounts of bonded H can inhibit the growth of <220> grain, which is the thermodynamically favorable direction for grain growth. Grain sizes as large as 80 nm were obtained in nc-Ge. Addition of C reduced the crystallinity. Mobility and carrier concentrations in nc-Ge were measured using Hall effect. Mobility values of ˜5cm2/V-sand carrier concentrations of ˜1x1016/cm3were obtained in larger grains. p+nn+ devices were fabricated on stainless steel substrates and compared with similar devices deposited in nc-Si:H. It was found that the voltage decreased and current increased in nc-Ge devices, in comparison with devices in nc-Si:H. Addition of C to Ge devices increased the open circuit voltage and shifted the quantum efficiency to larger photon energies, as expected.
Arrays of UV-violet [indium tin oxide (ITO)]/[copper phthalocyanine (CuPc)]/[4,4'-bis(9-carbazolyl)biphenyl (CBP)]/[2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1 ,3,4-oxadiazole (Bu-PBD)]/ CsF/A1 organic light-emitting devices (OLEDs), fabricated combinatorially using a sliding shutter technique, are described. Comparison of the electroluminescence spectrum with the photoluminescence spectrum of CBP indicates that the emission originates from the bulk of that layer. However, due to the high gap of CBP and the strong hole capture cross section of perylene contaminants, it was difficult to completely eliminate the emission from the latter. In arrays of devices in which the thickness of the CuPc and Bu-PBD were varied, but that of CBP was fixed at 50 nm, the optimal radiance R was obtained at CuPc and Bu-PBD thicknesses of 15 and 1 8 nm, respectively. At 10 mA/cm2, R was 0.38 mW/cm2, i.e., the external quantum efficiency was 1 .25%; R increased to -4 .2 mW/cm2 at 100 mA/cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.