We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130°C and 310°C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both ⟨111⟩ and ⟨220⟩ orientations, whereas at higher temperatures, the ⟨220⟩ grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300cm−1 and a high ratio between crystalline and amorphous peak that is at 285cm−1. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is ⟨220⟩, and that bonded hydrogen interferes with the growth of ⟨220⟩ grains. High hydrogen dilutions lead to more random nucleation.
Nanocrystalline Ge and its alloys with C are potentially useful materials for solar cells, thin film transistors and image sensors. In this paper, we discuss the growth and properties of these materials using remote, low pressure ECR plasma deposition. The materials and devices were grown from mixtures of germane, methane and hydrogen. It was found that high hydrogen dilutions (>40:1) were needed to crystallize the films. Studies of x-ray spectra revealed that the grains were primarily <220> oriented. The grain size was a strong function of hydrogen dilution and growth temperature. Higher growth temperatures resulted in larger grain size. High hydrogen dilution tended to reduce grain size. These results can be explained by recognizing that excessive amounts of bonded H can inhibit the growth of <220> grain, which is the thermodynamically favorable direction for grain growth. Grain sizes as large as 80 nm were obtained in nc-Ge. Addition of C reduced the crystallinity. Mobility and carrier concentrations in nc-Ge were measured using Hall effect. Mobility values of ˜5cm2/V-sand carrier concentrations of ˜1x1016/cm3were obtained in larger grains. p+nn+ devices were fabricated on stainless steel substrates and compared with similar devices deposited in nc-Si:H. It was found that the voltage decreased and current increased in nc-Ge devices, in comparison with devices in nc-Si:H. Addition of C to Ge devices increased the open circuit voltage and shifted the quantum efficiency to larger photon energies, as expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.