Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
Aims. With the ongoing AKARI infrared sky survey, of much greater sensitivity than IRAS, a wealth of post-AGB objects may be discovered. It is thus time to organize our present knowledge of known post-AGB stars in the galaxy with a view to using it to search for new post-AGB objects among AKARI sources. Methods. We searched the literature available on the NASA Astrophysics Data System up to 1 October 2006, and defined criteria for classifying sources into three categories: very likely, possible and disqualified post-AGB objects. The category of very likely post-AGB objects is made up of several classes. Results. We have created an evolutionary, on-line catalogue of Galactic post-AGB objects, to be referred to as the Toruń catalogue of Galactic post-AGB and related objects. The present version of the catalogue contains 326 very likely, 107 possible and 64 disqualified objects. For the very likely post-AGB objects, the catalogue gives the available optical and infrared photometry, infrared spectroscopy and spectral types, and links to finding charts and bibliography.
Abstract. We describe the INTEGRAL Burst Alert System (IBAS): the automatic software for the rapid distribution of the coordinates of the Gamma-Ray Bursts detected by INTEGRAL. IBAS is implemented as a ground based system, working on the near-real time telemetry stream. During the first six months of operations, six GRB have been detected in the field of view of the INTEGRAL instruments and localized by IBAS. Positions with an accuracy of a few arcminutes are currently distributed by IBAS to the community for follow-up observations within a few tens of seconds of the event.
The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented reflector dish and an innovative fully digital camera based on silicon photo-multipliers. Since the SST subarray will consist of up to 70 telescopes, the challenge is not only to build telescopes with excellent performance, but also to design them so that their components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the cama e-mail: matthieu.heller@cern.ch b e-mail: enrico.junior.schioppa@cern.ch c e-mail: alessio.porcelli@unige.ch era design and show that it is capable of matching the CTA requirements of operating up to high moonlight background conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.