Summary Temporal frequency is a fundamental sensory dimension in audition and touch. In audition, analysis of temporal frequency is necessary for speech and music perception [1]; in touch, the spectral analysis of vibratory signals has been implicated in texture perception [2, 3] and in sensing the environment through tools [4–7]. Environmental oscillations impinging upon the ear are generally thought to be processed independently of oscillations impinging upon the skin. Here, we show that frequency channels are perceptually linked across audition and touch. In a series of psychophysical experiments, we demonstrate that auditory stimuli interfere with tactile frequency perception in a systematic manner. Specifically, performance on a tactile frequency-discrimination task is impaired when an auditory distractor is presented with the tactile stimuli, but only if the frequencies of the auditory and tactile stimuli are similar. The frequency-dependent interference effect is observed whether the distractors are pure tones or band-pass noise, so an auditory percept of pitch is not required for the effect to be produced. Importantly, distractors that strongly impair frequency discrimination do not interfere with judgments of tactile intensity. This surprisingly specific crosstalk between different modalities reflects the importance of supramodal representations of fundamental sensory dimensions.
Background: Acellular dermal matrices have revolutionized alloplastic breast reconstruction. Furthering our knowledge of their biointegration will allow for improved design of these biomaterials. The ideal acellular dermal matrix for breast reconstruction would provide durable soft-tissue augmentation while undergoing rapid biointegration to promote physiologic elasticity and reduced infectious complications. The inclusion of fenestrations in their design is thought to promote the process of biointegration; however, the mechanisms underlying this theory have not been evaluated. Methods: Biointegration of standard and fenestrated acellular dermal matrices was assessed with serial photoacoustic microscopic imaging, in a murine dorsal skinfold window chamber model specifically designed to recapitulate the microenvironment of acellular dermal matrix–assisted alloplastic breast reconstruction. Photoacoustic microscopy allows for a serial, real-time, noninvasive assessment of hemoglobin content and oxygen saturation in living tissues, generating high-resolution, three-dimensional maps of the nascent microvasculature within acellular dermal matrices. Confirmatory histologic and immunohistochemical assessments were performed at the terminal time point. Results: Fenestrated acellular dermal matrices demonstrated increased fibroblast and macrophage lineage host cell infiltration, greater mean percentage surface area vascular penetration (21 percent versus 11 percent; p = 0.08), and greater mean oxygen saturation (13.5 percent versus 6.9 percent; p < 0.05) than nonfenestrated matrices by 2 weeks after implantation. By 21 days, host cells had progressed nearly 1 mm within the acellular dermal matrix fenestrations, resulting in significantly more vascularity across the top of the fenestrated matrix (3.8 vessels per high-power field versus 0.07 vessels per high-power field; p < 0.05). Conclusions: Inclusion of fenestrations in acellular dermal matrices improves the recellularization and revascularization that are crucial to biointegration of these materials. Future studies will investigate the optimal distance between fenestrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.