Understanding spatial patterns of land use and land cover is essential for studies addressing biodiversity, climate change and environmental modeling as well as for the design and monitoring of land use policies. The aim of this study was to create a detailed map of land use land cover of the deforested areas of the Brazilian Legal Amazon up to 2008. Deforestation data from and uses were mapped with Landsat-5/TM images analysed with techniques, such as linear spectral mixture model, threshold slicing and visual interpretation, aided by temporal information extracted from NDVI MODIS time series. The result is a high spatial resolution of land use and land cover map of the entire Brazilian Legal Amazon for the year 2008 and corresponding calculation of area occupied by different land use classes. The results showed that the four classes of Pasture covered 62% of the deforested areas of the Brazilian Legal Amazon, followed by Secondary Vegetation with 21%. The area occupied by Annual Agriculture covered less than 5% of deforested areas; the remaining areas were distributed among six other land use classes. The maps generated from this project -called TerraClass -are available at INPE's web site (http://www. inpe.br/cra/projetos_pesquisas/terraclass2008.php). KEYWORDS: Remote Sensing, Tropical Deforestation, TerraClass, Image Processing.Mapeamento do uso e cobertura da terra na Amazônia Legal Brasileira com alta resolução espacial utilizando dados Landsat-5/TM e MODIS RESUMOEntender o padrão espacial do uso e cobertura da terra é essencial para estudos de biodiversidade, mudanças climáticas e modelagem ambiental, bem como para concepção e acompanhamento de políticas direcionadas ao uso da terra. O objetivo deste estudo foi criar um mapa detalhado do uso e cobertura da terra para a porção desflorestada da Amazônia Legal Brasileira, até 2008. Dados de desflorestamento e uso foram mapeados usando imagens Landsat-5/TM analisadas com técnicas como modelo linear de mistura espectral, fatiamento e interpretação visual, auxiliados por informações temporais de NDVI extraídas de série temporal de dados MODIS. O resultado deste estudo é um mapa de uso e cobertura da terra com alta resolução espacial para toda Amazônia Legal Brasileira, para o ano de 2008, e os respectivos percentuais da área ocupada por diferentes classes de uso da terra. O resultado mostrou que, quatro classes de pastagens cobrem 62% da área desflorestada da Amazônia Legal Brasileira, seguida pela vegetação secundária com 21%. A área ocupada pela agricultura anual cobriu menos de 5% das áreas desflorestadas; as áreas restantes estavam distribuídas em outras seis classes de uso da terra. Os mapas gerados por este projeto, chamado TerraClass, estão disponíveis no site do INPE (http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php). PALAVRAS-CHAVE: Sensoriamento Remoto, Desflorestamento Tropical, TerraClass, Processamento de Imagens.
Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network ( Rede Amazônia Sustentável , RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.
Previous research has established the usefulness of remotely sensed vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the spatial dynamics of agriculture in the state of Mato Grosso (MT), Brazil. With these data it has become possible to track MT agriculture, which accounts for ~85% of Brazilian Amazon soy production, across periods of several years. Annual land cover (LC) maps support investigation of the spatiotemporal dynamics of agriculture as they relate to forest cover and governance and policy efforts to lower deforestation rates. We use a unique, spatially extensive 9-year (2005–2013) ground reference dataset to classify, with approximately 80% accuracy, MODIS VI data, merging the results with carefully processed annual forest and sugarcane coverages developed by Brazil’s National Institute for Space Research to produce LC maps for MT for the 2001–2014 crop years. We apply the maps to an evaluation of forest and agricultural intensification dynamics before and after the Soy Moratorium (SoyM), a governance effort enacted in July 2006 to halt deforestation for the purpose of soy production in the Brazilian Amazon. We find the pre-SoyM deforestation rate to be more than five times the post-SoyM rate, while simultaneously observing the pre-SoyM forest-to-soy conversion rate to be more than twice the post-SoyM rate. These observations support the hypothesis that SoyM has played a role in reducing both deforestation and subsequent use for soy production. Additional analyses explore the land use tendencies of deforested areas and the conceptual framework of horizontal and vertical agricultural intensification, which distinguishes production increases attributable to cropland expansion into newly deforested areas as opposed to implementation of multi-cropping systems on existing cropland. During the 14-year study period, soy production was found to shift from predominantly single-crop systems to majority double-crop systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.