Breeding for host resistance to parasites has become an imperative in many sheep industries. Because of the widespread use of AI in sheep breeding schemes, it is important to understand how the performance of offspring from rams varies in different flock environments, both for resistance to parasites and key production traits. This study used both variance component and reaction norm models to investigate the level of genotype x environment interaction for fecal egg count (FEC) and important Merino production traits in a range of flock environments in Australia. These flocks were linked by the use of common rams in a sire-referencing scheme. Both linear and quadratic polynomial reaction norm models were used. The heritability of these traits and the genetic correlation between them and FEC also was investigated using the reaction norm model. A contemporary group (CG) was defined by a flock, year, age class, sex, and paddock combination. Each CG environment was characterized by the mean value of any given trait for that CG. The recorded data used in the study were analyzed in a standardized form. Standardization for each trait was achieved within a CG by subtracting the CG mean from each observation and dividing by the CG SD. The genotype x environment effect accounted for <0.05 of the phenotypic variance for all traits. In most traits the heritability varied little across environments. The exceptions were FEC, BW, and both greasy and clean fleece weights, which had a higher heritability at the lower end of the environmental range. Fecal egg count also had a higher heritability in high-FEC environments. Genetic correlations between FEC and several key production traits were similar in the flock environments studied. Quadratic polynomial models and models with a variable residual fitted the data better than linear models. The genotype x environment effect for FEC and the genetic correlations between FEC and production traits were effectively zero; thus, sheep breeding programs for increased parasite resistance can be run effectively by ignoring these factors. Some account should be taken of the high heritabilities of FEC and fleece and BW in different flock environments.
Fecal egg count (FEC) has been widely used as an indicator of host resistance to gastrointestinal parasites in sheep and has been shown to be a heritable trait. Two other possible indicators of parasites, dag score (DS; accumulated fecal material) and fecal consistency score (FCS), were investigated in this study, along with BW. All four traits were studied to see how heritability and genetic correlations varied with age from weaning (4 mo) to hogget age (approximately 400 d). More than 1,100 lambs, the offspring of 37 rams, were recorded eight times between weaning (3 to 5 mo of age) and hogget age (13 to 18 mo of age) on two farms. Sire models were fitted to the data from each trait at each recording and in a repeatability model involving the whole data set. Overall, the heritabilities were 0.28+/-0.072 (FEC), 0.11+/-0.036 (DS), 0.12+/-0.036 (FCS), and 0.23+/-0.070 (BW). By fitting random regression models to the time-series data, it was possible to see how these heritability values varied as the lambs aged, from weaning to hogget age. The heritability of FEC rose from 0.2 at weaning to 0.65 at 400 d. Dag score had a higher heritability (0.25) in the middle of the age range and a low value at weaning (<0.1) and hogget age (0.16). The heritability of FCS was low, with a value of 0.2 at weaning reducing to 0.05 as the animals aged. Body weight had zero heritability at weaning, which rose to greater than 0.6 at hogget age. Most traits had low genetic correlations between them, the only exception being that between FCS and DS (0.63). Most genetic correlations varied little over the age range with the exception of FEC and BW, which fell from 0 at weaning to -0.63 at hogget age. Whereas FCS and DS may be good indicators of scouring, they are very different from FEC as an indicator of host resistance to gastrointestinal parasites.
Seasonal weight loss (SWL) is the most pressing constraint in ruminant production systems in tropical climates. SWL is controlled using supplementation, which is costly and difficult to implement in extensive systems, or using breeds adapted to tropical hot dry climates, like the Damara and Dorper. Albeit 15 years in Australia, little is known on how these sheep compare to Australian Merino. Here, the responses of the Damara, Dorper and Merino breeds to nutritional stress were compared. Seventy-two 6-month-old ram lambs, 24 from each breed, were allocated to growth (gaining 100 g/day) or restricted diets (losing 100 g/day, 85% of maintenance needs). Animals were weighed and carcass and meat characteristics determined. Results point out to the existence of important differences between the three genotypes, in particular between the Merino and the Southern African breeds. Additionally, Merino ram lambs seem to have been more influenced by SWL than the other two, with consequences on meat characteristics.
Fat tailed sheep breeds are known for their adaptation to nutritional stress, among other harsh production conditions. Damara sheep, native to Southern Africa, have recently been exported to other areas of the world, particularly Australia, aiming to produce lamb in semi-arid regions. Damaras have a unique hanging fat tail, a fat depot able to be mobilized under nutritional stress. In this article we perform an in-depth characterization of the fatty acid profiles of the fat tail in underfed and control Damara rams. Profiles were very similar between experimental groups, with the exception of palmitic acid (16:0) that was lower (P = 0.014) in underfed animals. However, the most striking result was the very high proportions of non-terminal branched chain fatty acids found in the fat tail adipose tissue, as well as the gastrocnemius muscle of Damara rams. The muscle of Dorper and Merino rams used in the same experiment did not present non-terminal branched chain fatty acids, suggesting that Damara rams have a unique lipid metabolism. Herein, we interpret this trait relating it to a higher ability of Damara sheep to digest fibrous fodder and to putative differences in the propionate metabolism by comparison to other sheep breeds.
The Rylington Merino internal parasite resistant selection line was initiated in 1987 from a wide genetic base of 100 ewe flocks. Selection for parasite resistance was based on selecting animals with a low worm egg count in a natural parasite challenge environment. The realised annual genetic gain for estimated breeding value of worm egg count is 2.7%. The genetic gain in parasite resistance has been achieved without any adverse genetic correlations with the other economically important production traits. There is an unfavourable genetic correlation between worm egg count and scouring traits. The recommendation to industry is to select for both low worm egg count and reduced diarrhoea and combine these traits with other economically important production traits. The relative weighting applied to each component trait will vary according to the local parasite challenge situation and the time frame available to achieve sustainable parasite control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.