Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.
The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.
The role of the pedestal position on the pedestal performance has been investigated in AUG, JET-ILW and TCV. When the pedestal is peeling-ballooning (PB) limited, the three machines show a similar behaviour. The outward shift of the pedestal density leads to the outward shift of the pedestal pressure which, in turns, reduces the PB stability, degrades the pedestal confinement and reduces the pedestal width. Once the experimental density position is considered, the EPED model is able to correctly predict the pedestal height. An estimate of the impact of the density position on a ITER baseline scenario shows that the maximum reduction in the pedestal height is 10% while the reduction in the fusion power is between 10% and 40% depending on the assumptions for the core transport model used.When the pedestal is not PB limited, a different behaviour is observed. The outward shift of the density is still empirically correlated with the pedestal degradation but no change in the pressure position is observed and the PB model is not able to correctly predict the pedestal height. On the other hand, the outward shift of the density leads to a significant increase of η e (where η e is the ratio of density to temperature scale lengths, η e = L ne /L Te ) which leads to the increase of the growth rate of microinstabilities (mainly ETG and ITG) by 50%. This suggests that, when the pedestal is not PB limited, the increase in the turbulent transport due to the outward shift of the density might play an important role in the decrease of the pedestal performance.
This paper compares the gyrokinetic instabilities and transport in two representative JET pedestals, one (pulse 78697) from the JET configuration with a carbon wall (C) and another (pulse 92432) from after the installation of JET's ITERlike Wall (ILW). The discharges were selected for a comparison of JET-ILW and JET-C discharges with good confinement at high current (3 MA, corresponding also to low ρ * ) and retain the distinguishing features of JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A comparison of the profiles and heating power reveals a stark qualitative difference between the discharges: the JET-ILW pulse (92432) requires twice the heating power, at a gas rate of 1.9×10 22 e/s, to sustain roughly half the temperature gradient of the JET-C pulse (78697), operated at zero gas rate. This points to heat transport as a central component of the dynamics limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW pedestal transport paradigm, which is proposed for further examination by both theory and experiment. ILW conditions modify the density pedestal in ways that decrease the normalized pedestal density gradient a/L n , often via an outward shift of the density pedestal. This is attributable to some combination of direct metal wall effects and the need for increased fueling to mitigate tungsten contamination. The modification to the density profile increases η = L n /L T , thereby producing more robust ion temperature gradient (ITG) and electron temperature gradient driven instability. The decreased pedestal gradients for JET-ILW (92432) also result in a strongly reduced E × B shear rate, further enhancing the ion scale turbulence. Collectively, these effects limit the pedestal temperature and demand more heating power to achieve good pedestal performance. Our simulations, consistent with basic theoretical arguments, find higher ITG turbulence, stronger stiffness, and higher pedestal transport in the ILW plasma at lower ρ * .
A novel multichannel Doppler backscattering system has been designed and tested for application on the DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] and National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] fusion plasma devices. Doppler backscattering measures localized intermediate wavenumber (k(perpendicular)rho(i) approximately 1-4,k(perpendicular) approximately 2-15 cm(-1)) density fluctuations and the propagation velocity of turbulent structures. Microwave radiation is launched at a frequency that approaches a cutoff layer in the plasma and at an angle that is oblique to the cutoff layer. Bragg backscattering occurs near the cutoff layer for fluctuations with k(perpendicular) approximately -2k(i), where k(i) is the incident probe wave vector at the scattering location. The turbulence propagation velocity can be determined from the Doppler shift in the return signal together with knowledge of the scattering wavenumber. Ray tracing simulations are used to determine k(perpendicular) and the scattering location. Frequency modulation of a voltage-controlled solid state microwave source followed by frequency multiplication is used to create an array of finely spaced (Delta f=350 MHz) frequencies spanning 1.4 GHz. The center of the array bandwidth is tunable within the range of approximately 53-78 GHz. This article details the system design, laboratory tests, and presents initial data from DIII-D plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.