To evaluate supports’ effects on catalytic activity toward the oxygen reduction reaction (ORR), a simple and controlled chemical synthesis, involving the hot injection of metal precursors, was developed to produce bimetallic PtNi nanoparticles (75 wt.% Pt and 25 wt.% Ni), supported on carbon nanotubes (CNTs) and carbon nanofibers (CNFs). The synthesized electrocatalyst was characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and scanning transmission electron microscopy (STEM). To determine the catalytic activity, an electrochemical evaluation of the synthesized catalysts in an acidic medium was performed using cyclic voltammetry (CV), CO stripping, and rotating disk electrode (RDE) tests. The presence of Pt and Ni in the nanoparticles was confirmed by EDS and XRD. Based on the STEM micrographs, the average particle size was 30 nm. Compared to the commercial Pt/C catalyst, the PtNi/CNT catalyst exhibited higher specific activity and slightly lower mass activity toward ORR in a 0.1 M HClO4 electrolyte solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.