The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators.
. Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. J Neurophysiol 94: 1169 -1179, 2005. First published March 30, 2005 doi:10.1152/jn.00070.2005. Irregular intrinsic behavior of neurons seems ubiquitous in the nervous system. Even in circuits specialized to provide periodic and reliable patterns to control the repetitive activity of muscles, such as the pyloric central pattern generator (CPG) of the crustacean stomatogastric ganglion (STG), many bursting motor neurons present irregular activity when deprived from synaptic inputs. Moreover, many authors attribute to these irregularities the role of providing flexibility and adaptation capabilities to oscillatory neural networks such as CPGs. These irregular behaviors, related to nonlinear and chaotic properties of the cells, pose serious challenges to developing deterministic Hodgkin-Huxley-type (HHtype) conductance models. Only a few deterministic HH-type models based on experimental conductance values were able to show such nonlinear properties, but most of these models are based on slow oscillatory dynamics of the cytosolic calcium concentration that were never found experimentally in STG neurons. Based on an up-to-date single-compartment deterministic HH-type model of a STG neuron, we developed a stochastic HH-type model based on the microscopic Markovian states that an ion channel can achieve. We used tools from nonlinear analysis to show that the stochastic model is able to express the same kind of irregularities, sensitivity to initial conditions, and low dimensional dynamics found in the neurons isolated from the STG. Without including any nonrealistic dynamics in our whole cell stochastic model, we show that the nontrivial dynamics of the membrane potential naturally emerge from the interplay between the microscopic probabilistic character of the ion channels and the nonlinear interactions among these elements. Moreover, the experimental irregular behavior is reproduced by the stochastic model for the same parameters for which the membrane potential of the original deterministic model exhibits periodic oscillations.
The existence of a special periodic window in the two-dimensional parameter space of an experimental Chua's circuit is reported. One of the main reasons that makes such a window special is that the observation of one implies that other similar periodic windows must exist for other parameter values. However, such a window has never been experimentally observed, since its size in parameter space decreases exponentially with the period of the periodic attractor. This property imposes clear limitations for its experimental detection.
We studied the formation dynamics of air bubbles emitted from a nozzle submerged in aqueous glycerol solutions of different viscosities. We describe the evolution of the bubbling regimes by using the air flow rate as a control parameter and the time between successive bubbles as a dynamical variable. Some results concerning bubbling coalescence were emulated with a combination of simple maps. We also observed the formation of air shells surrounding liquid drops inside the liquid, known as antibubbles. The antibubbling conditions were related to an intermittent regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.