. Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. J Neurophysiol 94: 1169 -1179, 2005. First published March 30, 2005 doi:10.1152/jn.00070.2005. Irregular intrinsic behavior of neurons seems ubiquitous in the nervous system. Even in circuits specialized to provide periodic and reliable patterns to control the repetitive activity of muscles, such as the pyloric central pattern generator (CPG) of the crustacean stomatogastric ganglion (STG), many bursting motor neurons present irregular activity when deprived from synaptic inputs. Moreover, many authors attribute to these irregularities the role of providing flexibility and adaptation capabilities to oscillatory neural networks such as CPGs. These irregular behaviors, related to nonlinear and chaotic properties of the cells, pose serious challenges to developing deterministic Hodgkin-Huxley-type (HHtype) conductance models. Only a few deterministic HH-type models based on experimental conductance values were able to show such nonlinear properties, but most of these models are based on slow oscillatory dynamics of the cytosolic calcium concentration that were never found experimentally in STG neurons. Based on an up-to-date single-compartment deterministic HH-type model of a STG neuron, we developed a stochastic HH-type model based on the microscopic Markovian states that an ion channel can achieve. We used tools from nonlinear analysis to show that the stochastic model is able to express the same kind of irregularities, sensitivity to initial conditions, and low dimensional dynamics found in the neurons isolated from the STG. Without including any nonrealistic dynamics in our whole cell stochastic model, we show that the nontrivial dynamics of the membrane potential naturally emerge from the interplay between the microscopic probabilistic character of the ion channels and the nonlinear interactions among these elements. Moreover, the experimental irregular behavior is reproduced by the stochastic model for the same parameters for which the membrane potential of the original deterministic model exhibits periodic oscillations.
Motor sequence learning, planning and execution of goal-directed behaviors, and decision making rely on accurate time estimation and production of durations in the seconds-to-minutes range. The pathways involved in planning and execution of goal-directed behaviors include cortico-striato-thalamo-cortical circuitry modulated by dopaminergic inputs. A critical feature of interval timing is its scalar property, by which the precision of timing is proportional to the timed duration. We examined the role of medial prefrontal cortex (mPFC) in timing by evaluating the effect of its reversible inactivation on timing accuracy, timing precision and scalar timing. Rats were trained to time two durations in a peak-interval (PI) procedure. Reversible mPFC inactivation using GABA agonist muscimol resulted in decreased timing precision, with no effect on timing accuracy and scalar timing. These results are partly at odds with studies suggesting that ramping prefrontal activity is crucial to timing but closely match simulations with the Striatal Beat Frequency (SBF) model proposing that timing is coded by the coincidental activation of striatal neurons by cortical inputs. Computer simulations indicate that in SBF, gradual inactivation of cortical inputs results in a gradual decrease in timing precision with preservation of timing accuracy and scalar timing. Further studies are needed to differentiate between timing models based on coincidence detection and timing models based on ramping mPFC activity, and clarify whether mPFC is specifically involved in timing, or more generally involved in attention, working memory, or response selection/inhibition.
The detection of causality is essential for our understanding of whether distinct events relate. A central requirement for the sensation of causality is temporal contiguity: As the interval between events increases, causality ratings decrease; for intervals longer than approximately 100 msec, the events start to appear independent. It has been suggested that this effect might be due to perception relying on discrete processing. According to this view, two events may be judged as sequential or simultaneous depending on their temporal relationship within a discrete neuronal process. To assess if alpha oscillations underlie this discrete neuronal process, we investigated how these oscillations modulate the judgment of causality. We used the classic launching effect with concurrent recording of EEG signal. In each trial, a disk moved horizontally toward a second disk at the center of the screen and stopped when they touched each other. After a delay that varied between 0 and 400 msec after contact, the right disk began to move. Participants were instructed to judge whether or not they had a feeling that the first disk caused the movement of the second disk. We found that frontocentral alpha phase significantly biased causality estimates. Moreover, we found that alpha phase was concentrated around different angles for trials in which participants judged events as causally related versus not causally related. We conclude that alpha phase plays a key role in biasing causality judgments.
The lobster gastric mill central pattern generator (CPG) is located in the stomatogastric ganglion and consists of 11 neurons whose circuitry is well known. Because all of the neurons are identifiable and accessible, it can serve as a prime experimental model for analyzing how microcircuits generate multiphase oscillatory spatiotemporal patterns. The neurons that comprise the gastric mill CPG consist of one interneuron, five burster neurons and six tonically firing neurons. The single interneuron (Int 1) is shared by the medial tooth subcircuit (containing the AM, DG and GMs) and the lateral teeth subcircuit (LG, MG and LPGs). By surveying cell-to-cell connections and the cooperative dynamics of the neurons we find that the medial subcircuit is essentially a feed forward system of oscillators. The Int 1 neuron entrains the DG and AM cells by delayed excitation and this pair then periodically inhibits the tonically firing GMs causing them to burst. The lateral subcircuit consists of two negative feedback loops of reciprocal inhibition from Int 1 to the LG/MG pair and from the LG/MG to the LPGs. Following a fast inhibition from Int 1, the LG/MG neurons receive a slowly developing excitatory input similar to that which Int 1 puts onto DG/AM. Thus Int 1 plays a key role in synchronizing both subcircuits. This coordinating role is assisted by additional, weaker connections between the two subsets but those are not sufficient to synchronize them in the absence of Int 1. In addition to the experiments, we developed a conductance-based model of a slightly simplified gastric circuit. The mathematical model can reproduce the fundamental rhythm and many of the experimentally induced perturbations. Our findings shed light on the functional role of every cell and synapse in this small circuit providing a detailed understanding of the rhythm generation and pattern formation in the gastric mill network.
Even though video game players frequently report losing track of time while playing, few studies have addressed whether there are long-lasting effects of such activity on time perception. We compared the performance of chronic and occasional video game players in sub- and multi-second time perception tasks. Temporal Discrimination and Temporal Bisection tasks, in the range of 100 to 1,000 milliseconds, and Time estimation and Time production tasks, in the range of 5 to 60 seconds, were used to assess sub- and multi-second time perceptions, respectively. Chronic video game players performed significantly better than occasional players on sub-second tasks, but no group difference was found for the multi-second tasks used. Sub- and multi-second time perceptions are associated to different underlying systems: automatic and cognitive controlled for sub- and multi-second tasks, respectively. We argue that video game use seems to induce more efficient implicit, rather than cognitive controlled, processing of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.