[1] We present the first results from a dense network of 36 campaign and 46 continuous GPS stations located in the Eastern Transverse Ranges Province (ETR), a transition zone between the southernmost San Andreas fault (SSAF) and eastern California shear zone (ECSZ). We analyzed the campaign data together with available data from continuous GPS stations for the period 1994-2009. We used the GPS velocity estimates to constrain elastic block models to investigate fault-loading rates representing four hypotheses characterized by different fault-block geometries. Fault-block scenarios include blocks bounded by the east-striking left-lateral Pinto Mountain, Blue Cut, and Chiriaco faults of the ETR; blocks bounded by a right-lateral north-northwest striking structure (the "Landers-Mojave earthquake line") that cuts obliquely across the ETR and mapped Mojave Desert faults; and combinations of these end-member hypotheses. Each model implies significantly different active fault geometries, block rotation rates, and slip rates for ETR and ECSZ structures. All models suggest that SSAF slip rate varies appreciably along strike, generally consistent with rates derived from tectonic geomorphology and paleoseismology, with a maximum of ∼23 mm/yr right-lateral along the southernmost Coachella Valley strand, decreasing systematically to <10 mm/yr right-lateral through the San Gorgonio Pass region. Slip rate estimates for the San Jacinto fault are ∼12 mm/yr for all models tested. All four models fit the data equally well in a statistical sense. Qualitative comparison among models and consideration of geologic slip rates and other independent data reveals strengths and weaknesses of each model.
Campaign GPS data collected from 2002 to 2014 result in 41 new site velocities from the San Bernardino Mountains and vicinity. We combined these velocities with 93 continuous GPS velocities and 216 published velocities to obtain a velocity profile across the Pacific-North America plate boundary through the San Bernardino Mountains. We modeled the plate boundary-parallel, horizontal deformation with 5-14 parallel and one obliquely oriented screw dislocations within an elastic half-space. Our rate for the San Bernardino strand of the San Andreas Fault (6.5 ± 3.6 mm/yr) is consistent with recently published latest Quaternary rates at the 95% confidence level and is slower than our rate for the San Jacinto Fault (14.1 ± 2.9 mm/yr). Our modeled rate for all faults of the Eastern California Shear Zone (ECSZ) combined (15.7 ± 2.9 mm/yr) is faster than the summed latest Quaternary rates for these faults, even when an estimate of permanent, off-fault deformation is included. The rate discrepancy is concentrated on faults near the 1992 Landers and 1999 Hector Mine earthquakes; the geodetic and geologic rates agree within uncertainties for other faults within the ECSZ. Coupled with the observation that postearthquake deformation is faster than the pre-1992 deformation, this suggests that the ECSZ geodetic-geologic rate discrepancy is directly related to the timing and location of these earthquakes and is likely the result of viscoelastic deformation in the mantle that varies over the timescale of an earthquake cycle, rather than a redistribution of plate boundary slip at a timescale of multiple earthquake cycles or longer.
We present numerical modeling of the forces acting on the base of the crust caused by small‐scale convection of the upper mantle in southern California. Three‐dimensional upper mantle shear wave velocity structure is mapped to three‐dimensional density structure that is used to load a finite element model of instantaneous upper mantle flow with respect to a rigid crust, providing an estimate of the tractions acting on the base of the crust. Upwelling beneath the southern Walker Lane Belt and Salton Trough region and downwelling beneath the southern Great Valley and eastern and western Transverse Ranges dominate the upper mantle flow and resulting crustal tractions. Divergent horizontal and upward directed vertical tractions create a tensional to transtensional crustal stress state in the Walker Lane Belt and Salton Trough, consistent with transtensional tectonics in these areas. Convergent horizontal and downward directed vertical tractions in the Transverse Ranges cause approximately N–S crustal compression, consistent with active shortening and transpressional deformation near the “Big Bend” of the San Andreas fault. Model predictions of crustal dilatation and the forces acting on the Mojave block compare favorably with observations suggesting that small‐scale upper mantle convection provides an important contribution to the sum of forces driving transpressional crustal deformation in southern California. Accordingly, the obliquity of the San Andreas fault with respect to plate motions may be considered a consequence, rather than a cause, of contractional deformation in the Transverse Ranges, itself driven by downwelling in the upper mantle superimposed on shear deformation caused by relative Pacific–North American plate motion.
The 4 April 2010 M w 7.2 El Mayor-Cucapah (EMC) earthquake provides the best opportunity to date to study the lithospheric response to a large (>M6) magnitude earthquake in the Salton Trough region through analysis of Global Positioning System (GPS) data. In conjunction with the EarthScope Plate Boundary Observatory (PBO), we installed six new continuous GPS stations in the months following the EMC earthquake to increase station coverage in the epicentral region of northern Baja California, Mexico. We modeled the pre-EMC deformation field using available campaign and continuous GPS data for southern California and northern Baja California and inferred a pre-EMC secular rate at each new station location. Through direct comparison of the pre-and post-EMC secular rates, we calculate long-term changes associated with viscoelastic relaxation in the Salton Trough region. We fit these velocity changes using numerical models employing an elastic upper crustal layer underlain by a viscoelastic lower crustal layer and a mantle half-space. Forward models that produce the smallest weighted sum of squared residuals have an upper mantle viscosity in the range 4-6 × 1018 Pa s and a less well-resolved lower crustal viscosity in the range 2 × 10 19 to 1 × 10 22 Pa s. A high-viscosity lower crust, despite high heat flow in the Salton Trough region, is inconsistent with felsic composition and might suggest accretion of mafic lower crust associated with crustal spreading obscured by thick sedimentary cover.
[1] Vegetation bands are periodic bands of vegetation, separated by interband spaces devoid of vegetation, oriented parallel to the topographic contour in some gently sloping arid to semiarid environments. Models of vegetation band formation attribute their formation to positive feedbacks among vegetation density, soil porosity/permeability, and infiltration rates. Here we present an alternative model based on field measurements at our study sites in southern Nevada. In this model, interband spaces between vegetation bands form because topographic mounds beneath vegetation bands detain water upslope from vegetation bands, leading to hydrologic and sedimentologic conditions that inhibit the survival of plants in interband spaces. We used terrestrial laser scanning (TLS) to create high-resolution ($10 cm 2 /pixel) raster data sets of bare-earth topography and canopy height for four study sites. Analyses of the TLS data, in addition to measurements of soil shear strength and particle size, document the potential for detention in interband spaces and a near-inverse proportionality between band spacing and regional slope. We describe a cellular automaton model (herein called model 1) for vegetation band formation that includes just two user-defined parameters and that generates vegetation bands similar to those at our field sites, including the inverse proportionality between spacing and regional slope. A second model (model 2) accurately predicts the width of vegetation bands in terms of the number and spacing of plants and the geometry of individual plant mounds. We also present a GIS-based analysis that predicts where bands occur within a region based on topographic and hydroclimatic controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.