The precise tectonic role of the left-lateral Garlock fault in southern California has been controversial. Three proposed tectonic models yield signifi cantly different predictions for the slip rate, history, orientation, and total bedrock offset as a function of distance along strike. In an effort to test these models, we present the fi rst slip-rate estimate for the western Garlock fault that is constrained by radiocarbon dating. A channel (referred to here as Clark Wash) incised into a Latest Pleistocene alluvial fan has been leftlaterally offset at least 66 ± 6 m and no more than 100 m across the western Garlock fault, indicating a left-lateral slip rate of 7.6 mm/ yr (95% confi dence interval of 5.3-10.7 mm/ yr) using dendrochronologically calibrated radiocarbon dates. The timing of aggradational events on the Clark Wash fan corresponds closely to what has been documented elsewhere in the Mojave Desert, suggesting that much of this activity has been climatically controlled. The range-front fault, located a few hundred meters northwest of the Garlock fault, has probably acted primarily as a normal fault, with a Holocene rate of dip-slip of 0.4-0.7 mm/yr. The record of prehistoric earthquakes on the Garlock fault at this site, though quite possibly incomplete, suggests a longer interseismic interval (1200-2700 yr) for the western Garlock fault than for the central Garlock fault. The relatively high slip rate determined here indicates that the western and central segments of the Garlock fault show similar rates of movement that are somewhat faster than rates inferred from geodetic data. The high rate of motion on the western Garlock fault is most consistent with a model in which the western Garlock fault acts as a conjugate shear to the San Andreas fault. Other mechanisms, involving extension north of the Garlock fault and block rotation at the eastern end of the fault may be relevant to the central and eastern sections of the fault, but they cannot explain a high rate of slip on the western Garlock fault.
Campaign GPS data collected from 2002 to 2014 result in 41 new site velocities from the San Bernardino Mountains and vicinity. We combined these velocities with 93 continuous GPS velocities and 216 published velocities to obtain a velocity profile across the Pacific-North America plate boundary through the San Bernardino Mountains. We modeled the plate boundary-parallel, horizontal deformation with 5-14 parallel and one obliquely oriented screw dislocations within an elastic half-space. Our rate for the San Bernardino strand of the San Andreas Fault (6.5 ± 3.6 mm/yr) is consistent with recently published latest Quaternary rates at the 95% confidence level and is slower than our rate for the San Jacinto Fault (14.1 ± 2.9 mm/yr). Our modeled rate for all faults of the Eastern California Shear Zone (ECSZ) combined (15.7 ± 2.9 mm/yr) is faster than the summed latest Quaternary rates for these faults, even when an estimate of permanent, off-fault deformation is included. The rate discrepancy is concentrated on faults near the 1992 Landers and 1999 Hector Mine earthquakes; the geodetic and geologic rates agree within uncertainties for other faults within the ECSZ. Coupled with the observation that postearthquake deformation is faster than the pre-1992 deformation, this suggests that the ECSZ geodetic-geologic rate discrepancy is directly related to the timing and location of these earthquakes and is likely the result of viscoelastic deformation in the mantle that varies over the timescale of an earthquake cycle, rather than a redistribution of plate boundary slip at a timescale of multiple earthquake cycles or longer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.