[1] In July 2002 the VELETA-2002 field campaign was held in Sierra Nevada (Granada) in the south of Spain. The main objectives of this field campaign were the study of the influence of elevation and atmospheric aerosols on measured UV radiation. In the first stage of the field campaign, a common calibration and intercomparison between Licor-1800 spectroradiometers and Cimel-318 Sun photometers was performed in order to assess the quality of the measurements from the whole campaign. The intercomparison of the Licor spectroradiometers showed, for both direct and global irradiances, that when the comparisons were restricted to the visible part of the spectrum the deviations were within the instruments' nominal accuracies which allows us to rely on these instruments for measuring physical properties of aerosols at the different measurement stations. A simultaneous calibration on AOD data was performed for the Cimel-318 Sun photometers. When a common calibration and methodology was applied, the deviation was lowered to much less than 0.01 for AOD. At the same time an intercomparison has been made between the AOD values given by the spectroradiometers and the Sun photometers, with deviations obtained from 0.01 to 0.03 for the AOD in the visible range, depending on the channel. In the UVA range, the AOD uncertainty was estimated to be around 0.02 and 0.05 for Cimel and Licor respectively. In general the experimental differences were in agreement with this uncertainty estimation. In the UVB range the AOD measurements should not be used due to maximum instrumental uncertainties.
Abstract. Ultraviolet solar irradiance (290-385 nm) was analyzed in Valencia and IntroductionUltraviolet solar radiation has a significant influence on the Earth's atmosphere. In the stratosphere the absorption of ultraviolet radiation causes an increase of the air temperature in the upper atmospheric layers and is the origin of the existence and variability of stratospheric ozone. On the surface, UV solar radiation represents a small part of the spectrum, although it is an important part because of its biological and photochemical effects. Thus a clear awareness of its availability and its variation, both temporal and spatial, is of great importance in many research areas: (1) Several studies have been conducted to quantify the attenuation of UV radiation by clouds. Factors such as cloud location, percent cover, cloud optical thickness, liquid water content, and particle distribution make it difficult to develop a quantitative relationship relating cloud properties to the attenuation of UV radiation. Some authors [Zavodska and Reichrt, 1985] classify the daily total and UV radiation measurements using the cloud amount as a parameter. Cloud cover is not a very objective measurement because it may be related to very different sky conditions, depending on the relative Sun-cloud position. In this sense, Estupi•an et al. [1996] showed that for the same cloud cover, reductions of up to 99% or increases of up to 27% of UV radiation may be produced with respect to the same measurement on clear days in terms of whether or 4759
[1] Measurements of diffuse UV erythemal radiation (UVER) using a shadowband have been corrected using the models proposed by Drummond (1956), LeBaron et al. (1990), andBatlles et al. (1995). Two different methods were used to validate these models: intercomparison with an Optronic OL754 spectroradiometer and comparison with the values simulated by two radiative transfer codes, SMARTS and SBDART. For this comparison only clear days have been used. The corrected experimental values were analyzed in order to study the average values of the diffuse UVER fraction in relation to the clearness index k t . These varied between 62%, for k t close to 0.8, and 93% for k t of 0.2-0.3. Finally, a study of the monthly average and extreme values of the UV Index for diffuse radiation is presented, showing a maximum value of 6 in June.
In Western Europe, the HIV-1 epidemic among men who have sex with men (MSM) is dominated by subtype B. However, recently, other genetic forms have been reported to circulate in this population, as evidenced by their grouping in clusters predominantly comprising European individuals. Here we describe four large HIV-1 non-subtype B clusters spreading among MSM in Spain. Samples were collected in 9 regions. A pol fragment was amplified from plasma RNA or blood-extracted DNA. Phylogenetic analyses were performed via maximum likelihood, including database sequences of the same genetic forms as the identified clusters. Times and locations of the most recent common ancestors (MRCA) of clusters were estimated with a Bayesian method. Five large non-subtype B clusters associated with MSM were identified. The largest one, of F1 subtype, was reported previously. The other four were of CRF02_AG (CRF02_1; n = 115) and subtypes A1 (A1_1; n = 66), F1 (F1_3; n = 36), and C (C_7; n = 17). Most individuals belonging to them had been diagnosed of HIV-1 infection in the last 10 years. Each cluster comprised viruses from 3 to 8 Spanish regions and also comprised or was related to viruses from other countries: CRF02_1 comprised a Japanese subcluster and viruses from 8 other countries from Western Europe, Asia, and South America; A1_1 comprised viruses from Portugal, United Kingom, and United States, and was related to the A1 strain circulating in Greece, Albania and Cyprus; F1_3 was related to viruses from Romania; and C_7 comprised viruses from Portugal and was related to a virus from Mozambique. A subcluster within CRF02_1 was associated with heterosexual transmission. Near full-length genomes of each cluster were of uniform genetic form. Times of MRCAs of CRF02_1, A1_1, F1_3, and C_7 were estimated around 1986, 1989, 2013, and 1983, respectively. MRCA locations for CRF02_1 and A1_1 were uncertain (however initial expansions in Spain in Madrid and Vigo, respectively, were estimated) and were most probable in Bilbao, Spain, for F1_3 and Portugal for C_7. These results show that the HIV-1 epidemic among MSM in Spain is becoming increasingly diverse through the expansion of diverse non-subtype B clusters, comprising or related to viruses circulating in other countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.