The origin, the phylogeographical structure and divergence times of hybridrogenetic Squalius alburnoides complex were analysed based on the complete mitochondrial cytochrome b gene (1140 pb). The molecular phylogenetic analyses suggest that the S. alburnoides complex has at least five asexual lineages of independent origin. The events that produced this ancestral hybridization took place over a long period of time. There have been multiple hybridization events throughout time, beginning in the upper Pliocene and probably continuing into the present. Increased humidity caused by climate changes in the Pliocene, along with tectonic lifting and vasculation of the Iberian Peninsula, led to the formation of current river drainages which, in turn, contributed to these hybridization events. We postulate that the Northwestern (Mondego and Douro) and the Southwest (Quarteira) drainages of the Iberian Peninsula delimited the border of the maternal ancestral distribution and that vicariant events led to the disappearance of the maternal ancestor in these regions, leaving today only the hybrid species. Two hypotheses have been suggested to explain the similarities between the mtDNA diversity observed in S. alburnoides and its maternal ancestor (S. pyrenaicus). The first hypothesizes that mtDNA similarity results from the recent extinction of the paternal ancestor, while the other postulates that: 'reconstituted non hybrid males' assumed the place of the extinct bisexual paternal ancestor and produced new hybridizations with S. pyrenaicus females.
A phylogeny of the species in the genera Chondrostoma and Squalius was constructed based on the complete mitochondrial cytochrome b gene (1140pb). The molecular phylogeny was used to test the effect of the Mediterranean Lago Mare dispersal theory on the processes of divergence and speciation of European freshwater fishes. Phylogenetic relationships among Squalius samples and the molecular clock revealed that the ancestor of the current Iberian Squalius species inhabited a wide geographic area in the central and southwestern part of the former Iberian Peninsula during the Miocene before the Lago Mare phase. Similarly, the four main Iberian lineages of the genus Chondrostoma originated in the Middle-Upper Miocene. Hence, the Lago Mare phase of the Mediterranean Sea seems to have been a too recent paleogeographic event to have had any major impact on the dispersion of Squalius and Chondrostoma species. However, the reduction of the water-bodies during the Tortonian and Messinian may have intensified the isolation of populations. The Operational Biogeographic Units recovered from the Squalius and Chondrostoma phylogenies also reject the Lago Mare dispersal theory and support the idea that the differentiation processes were due to both the formation of the current hydrographical basin during the Plio-Pleistocene as well as to an earlier endorrheism event that occurred prior to hydrographical configuration.
The phylogenetic relationships and haplotype diversity of all Iberian barbels were examined by analyzing the complete mitochondrial cytochrome b gene sequence (1141 bp) of 72 specimens from 59 Iberian localities. Phylogenetic findings demonstrated a clear distinction between two mitochondrial lineages and confirmed the existence of two previously considered subgenera: Barbus and Luciobarbus: The first subgenus, Barbus, is represented on the Iberian Peninsula by Barbus haasi and Barbus meridionalis. The second subgenus, Luciobarbus, includes the remaining endemic Iberian species: Barbus comizo, Barbus bocagei, Barbus microcephalus, Barbus sclateri, Barbus guiraonis, and Barbus graellsii. Mean haplotype divergence between these subgenera was 10.40%, providing evidence of a clear subdivision within the Iberian barbels. Our results conflict with those reported in a recent study, based on 307 cytochrome b base pairs, that failed to identify any division within the genus Barbus in the Iberian Peninsula. The inclusion of nine further species belonging to this genus (used as outgroups) allowed us to establish a closer relationship of the Iberian species of the subgenus Barbus with other European taxa than with the Iberian Luciobarbus, which was found to cluster with North African, Caucasian, and Greek species. At the population level, no biogeographic structure was shown by specimens of each species (only 5.98% of the variation was attributable to differences among populations of each species). Given the discrete amount of divergence found among the Luciobarbus species, the formation of current hydrographic basins during the Plio-Pleistocene seems to have played a major role in their isolation and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.