Generalized symbolic trajectory evaluation (GSTE) is a powerful, new method for formal verification that combines the industriallyproven scalability and capacity of classical symbolic trajectory evaluation with the expressive power of temporal-logic model checking. GSTE was originally developed at Intel and has been used successfully on Intel's next-generation microprocessors. However, the supporting algorithms and tools for GSTE are still relatively immature.GSTE specifications are given as assertion graphs, an extension of ∀-automata. This paper presents a linear-time, linear-size translation from GSTE assertion graphs into monitor circuits, which can be used with dynamic verification both as a quick "sanity check" of the specification before effort is invested in abstraction and formal verification, and also as means to reuse GSTE specifications with other validations methods. We present experimental results using real GSTE assertion graphs for real industrial circuits, showing that the circuit construction procedure is efficient in practice and that the monitor circuits impose minimal simulation overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.