Using a hierarchical approach, 620 non-essential single-gene yeast deletants generated by
EUROFAN I were systematically screened for cell-wall-related phenotypes. By analyzing
for altered sensitivity to the presence of Calcofluor white or SDS in the growth medium,
altered sensitivity to sonication, or abnormal morphology, 145 (23%) mutants showing at
least one cell wall-related phenotype were selected. These were screened further to identify
genes potentially involved in either the biosynthesis, remodeling or coupling of cell wall
macromolecules or genes involved in the overall regulation of cell wall construction and to
eliminate those genes with a more general, pleiotropic effect. Ninety percent of the mutants
selected from the primary tests showed additional cell wall-related phenotypes. When
extrapolated to the entire yeast genome, these data indicate that over 1200 genes may
directly or indirectly affect cell wall formation and its regulation. Twenty-one mutants with
altered levels of β1,3-glucan synthase activity and five Calcofluor white-resistant mutants
with altered levels of chitin synthase activities were found, indicating that the
corresponding genes affect β1,3-glucan or chitin synthesis. By selecting for increased
levels of specific cell wall components in the growth medium, we identified 13 genes that
are possibly implicated in different steps of cell wall assembly. Furthermore, 14 mutants
showed a constitutive activation of the cell wall integrity pathway, suggesting that they
participate in the modulation of the pathway either directly acting as signaling components
or by triggering the Slt2-dependent compensatory mechanism. In conclusion, our screening
approach represents a comprehensive functional analysis on a genomic scale of gene
products involved in various aspects of fungal cell wall formation.
Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3‐regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha‐tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c‐erbA) were identified in the isolated clones by gel‐shift and footprinting assays. Sites in the NCAM (in an intron), alpha‐tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid‐deficient humans and experimental animals.
A new methodology for the identification of genes modulated by transcription factors in vivo is described. Mouse genomic DNA fragments bound by the thyroid hormone receptor (T3R) were selected and amplified in vitro. Subsequent hybridisation with biotinylated cDNA allowed the selection of those DNA fragments containing binding sites for T3R that corresponded to transcribed DNA. Expression analysis of the corresponding genes showed that more than 80% are indeed modulated by thyroid hormones in vivo in the liver. Together with the presence of consensus binding sites for T3R this result suggests that the selected DNA fragments may contain T3R transcriptional regulatory elements. This method, extensive to other ligand-modulated transcription factors, might be useful to all transcription factors with slight modifications.
The choline-binding domain (ChoBD) of the carboxy-terminal region of the Streptococcus pneumoniae amidase LYTA (C-LYTA) presents a strong affinity for tertiary amines. We report a method for single-step purification of proteins expressed in the methylotrophic yeast Pichia pastoris based on the fusion of C-LYTA to the protein of interest. We show that C-LYTA can be efficiently expressed and secreted in this host. Tagged proteins fused to this binding domain can be purified on inexpensive DEAE matrices. It therefore provides a useful system for the purification of recombinant proteins with high specificity suitable for industrial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.