This work presents ground-based spectrally resolved water emission at R = 30,000–100,000 over infrared wavelengths covered by the JWST (2.9–12.8 μm). Two new surveys with iSHELL and the VISIR are combined with previous spectra from the CRIRES to cover parts of multiple rovibrational and rotational bands observable within telluric transmission bands, for a total of ≈160 spectra and 85 disks (30 of which are JWST targets in Cycle 1). The general expectation of a range of regions and excitation conditions traced by infrared water spectra is for the first time supported by the combined kinematics and excitation as spectrally resolved at multiple wavelengths. The main findings from this analysis are: (1) water lines are progressively narrower from the rovibrational bands at 2–9 μm to the rotational lines at 12 μm, and partly match broad and narrow emission components, respectively, as extracted from rovibrational CO spectra; (2) rotation diagrams of resolved water lines from upper-level energies of 4000–9500 K show vertical spread and curvatures indicative of optically thick emission (≈1018 cm−2) from a range of excitation temperatures (≈800–1100 K); and (3) the new 5 μm spectra demonstrate that slab model fits to the rotational lines at >10 μm strongly overpredict the rovibrational emission bands at <9 μm, implying vibrational excitation not in thermodynamic equilibrium. We discuss these findings in the context of emission from a disk surface and a molecular inner disk wind, and provide a list of guidelines to support the analysis of spectrally unresolved JWST spectra.
Small planets are common around late-M dwarfs and can be detected through highly precise photometry by the transit method. Planets orbiting nearby stars are particularly important as they are often the best-suited for future follow-up studies. We present observations of three nearby M-dwarfs referred to as EIC-1, EIC-2, and EIC-3, and use them to search for transits and set limits on the presence of planets. On most nights our observations are sensitive to Earth-sized transiting planets, and photometric precision is similar to or better than TESS for faint late-M dwarfs of the same magnitude (I ≈ 15 mag). We present our photometry and transit search pipeline, which utilizes simple median detrending in combination with transit least squares based transit detection (Hippke & Heller 2019). For these targets, and transiting planets between one and two Earth radii, we achieve an average transit detection probability of∼60% between periods of 0.5 and 2 days, ∼30% between 2 and 5 days, and ∼10% between 5 and 10 days. These sensitivities are conservative compared to visual searches.
We report the flare activity of Wolf 359, the fifth closest star to the Sun and a candidate exoplanet-hosting M dwarf. The star was a target of the Kepler/K2 mission and was observed by the EDEN project, a global network of 1–2 m class telescopes for detection and characterization of rocky exoplanets in the habitable zones of late-M dwarfs within 50 light year from the solar system. In the combination of the archived K2 data and our EDEN observations, a total of 872 flares have been detected, 861 with the K2 (860 in the short-cadence and 18 in the long-cadence data, with 17 long-cadence events having short-cadence counterparts) and 11 with EDEN. Wolf 359 has relatively strong flare activity even among flaring M dwarfs, in terms of the flare activity indicator (FA) defined as the integrated flare energy relative to the total stellar bolometric energy, where FA = ∑E f /∫L bol dt ∼ 8.93 × 10−5 for the long-cadence flares, whereas for K2 short cadence and EDEN flares, the FA values are somewhat larger, FA ≈ 6.67 × 10−4 and FA ≈ 5.25 × 10−4, respectively. Such a level of activity, in accordance with the rotation period (P rot), suggests the star to be in the saturation phase. The size of the starspots is estimated to be at least 1.87% ± 0.59% of the projected disk area of Wolf 359. We find no correlation of FA with the stellar rotational phase. Our analysis indicates a flare frequency distribution in a power-law form of dN / dE ∝ E − α with α = 2.13 ± 0.14, equivalent to an occurrence rate of flares E f ≥ 1031 erg about once per day and of superflares with E f ≥ 1033 erg approximately 10 times per year. These superflares may impact the habitability of system in multiple ways, the details of which are topics for future investigations.
No abstract
This work presents water emission spectra at wavelengths covered by JWST (2.9-12.8 µm) as spectrally-resolved with high resolving powers (R = 30,000-100,000) using ground-based spectrographs. Two new surveys with iSHELL and VISIR are combined with previous spectra from CRIRES and TEXES to cover parts of multiple ro-vibrational and rotational bands observable within telluric transmission bands, for a total of 85 disks and ≈ 160 spectra. The general expectation of a range of regions and excitation conditions traced by infrared water spectra is for the first time supported by the combined kinematics and excitation as spectrally resolved at multiple wavelengths. The main findings from this analysis are: 1) water lines are progressively narrower going from the ro-vibrational bands at 2-9 µm to the rotational lines at 12 µm, and partly match a broad (BC) and narrow (NC) emission components, respectively, as extracted from ro-vibrational CO spectra; 2) rotation diagrams of resolved water lines from upper level energies of 4000-9500 K show curvatures indicative of optically thick emission (≈ 10 18 cm −2 ) from a range of excitation temperatures (≈ 800-1100 K); 3) the new 5 µm spectra demonstrate that slab model fits to the rotational lines at > 10 µm strongly over-predict the ro-vibrational emission bands at < 9 µm, implying non-LTE excitation. We discuss these findings in the context of a emission from a disk surface and a molecular inner disk wind, and provide a list of detailed guidelines to support the analysis and interpretation of spectrally-unresolved JWST spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.