Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970s in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log–normal distribution with a geometric mean (GM) of 11.2 Bq m–3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log–normal distribution with a GM of 41.9 Bq m–3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure.
Radon has been identified as the second leading cause of lung cancer after tobacco smoking. (222)Rn (radon gas) and (220)Rn (thoron gas) are the most common isotopes of radon. In this study, thoron exposure in Canada was assessed based on three community radon/thoron surveys conducted recently. It was confirmed that thoron was detectable in most homes and thoron progeny were present in every home surveyed. Results demonstrated that thoron concentrations varied more widely than radon. No clear correlation between (222)Rn and (220)Rn concentrations was observed in simultaneous measurements. It is estimated that thoron contributes to about 7 % of the radiation dose due to indoor radon exposure based on measurements in about 260 individual homes. Because indoor measurements and geological gamma-ray surveys did not support a reasonable association between (222)Rn and (220)Rn, thoron concentrations could not be predicted from widely available indoor radon information. In order to better assess thoron exposure in Canada and thoron risk to the Canadian population in various geographic locations, more thoron progeny measurements are required.
Uranium is ubiquitously found in drinking water and food. The gastrointestinal tract absorption fraction (f(1)) is an important parameter in risk assessment of uranium burdens from ingestion. Although absorption of uranium from ingestion has been studied extensively in the past, human data concerning children and adults are still limited. In a previous study based on measurements of uranium concentration in 73 bone-ash samples collected by Health Canada, the absorption fractions for uranium ingestion were determined to be 0.093 ± 0.113 for infants, and 0.050 ± 0.032 for young children ranging from 1 to 7 y of age. To extend the study, a total of 69 bone-ash samples were selected for children and adults ranging from 7 to 25 y of age and residing in the same Canadian community that is known to have an elevated level of uranium in its drinking water supply. For each bone-ash sample, the total uranium concentration was measured by inductively coupled plasma mass spectrometry. To solve uranium transfer in the biokinetic model for uranium given in International Commission of Radiological Protection (ICRP) Publication 69 with estimated daily uranium intake, the program WinSAAM v3.0.1 was used. The absorption fractions were determined to be 0.030 ± 0.022 for children (7-18 y) and 0.021 ± 0.015 for adults (18-25 y). For anyone more than 18 y of age, the estimated f(1) value for uranium agree well with the ICRP recommended value of 0.02.
Radon has been identified as the second leading cause of lung cancer after tobacco smoking. Information on indoor radon concentrations is required to assess the lung cancer burden due to radon exposure. However, radon data in highly populated southern Ontario are very limited. Since radon in soil is believed to be the main source of radon in homes, measurements of soil gas radon concentrations can be used to estimate variations in radon potential of indoor environments. This study reports a transect survey of natural background variation in soil radon levels across southern Ontario. The results indicate that radon risk could be high in some areas of southern Ontario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.