Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon.
Radon has been identified as the second leading cause of lung cancer after tobacco smoking. Information on indoor radon concentrations is required to assess the lung cancer burden due to radon exposure. However, radon data in highly populated southern Ontario are very limited. Since radon in soil is believed to be the main source of radon in homes, measurements of soil gas radon concentrations can be used to estimate variations in radon potential of indoor environments. This study reports a transect survey of natural background variation in soil radon levels across southern Ontario. The results indicate that radon risk could be high in some areas of southern Ontario.
Abstract. In January 2009, the IAEA EMRAS II (Environmental Modelling for Radiation Safety II) program was launched. The goal of the program is to develop, compare and test models for the assessment of radiological impacts to the public and the environment due to radionuclides being released or already existing in the environment; to help countries build and harmonize their capabilities; and to model the movement of radionuclides in the environment. Within EMRAS II, nine working groups are active; this paper will focus on the activities of Working Group 1: Reference Methodologies for Controlling Discharges of Routine Releases. Within this working group environmental transfer and dose assessment models are tested under different scenarios by participating countries and the results compared. This process allows each participating country to identify characteristics of their models that need to be refined. The goal of this working group is to identify reference methodologies for the assessment of exposures to the public due to routine discharges of radionuclides to the terrestrial and aquatic environments. Several different models are being applied to estimate the transfer of radionuclides in the environment for various scenarios. The first phase of the project involves a scenario of nuclear power reactor with a coastal location which routinely (continuously) discharges 60 Co, 85 Kr, 131 I, and 137 Cs to the atmosphere and 60 Co, 137 Cs, and 90 Sr to the marine environment. In this scenario many of the parameters and characteristics of the representative group were given to the modellers and cannot be altered. Various models have been used by the different participants in this inter-comparison (PC-CREAM, CROM, IMPACT, CLRP POSEIDON, SYMBIOSE and others). This first scenario is to enable a comparison of the radionuclide transport and dose modelling. These scenarios will facilitate the development of reference methodologies for controlled discharges.
The long-term monitoring of soil radon variations was conducted at two reference sites in Ottawa. The purpose of this study was to determine whether a single soil radon survey could provide a representative soil radon characteristic of the site. Results showed that during the normal field survey period from June to September in Canada, a single field survey with multiple measurements of soil gas radon concentrations at a depth of 80 cm can characterise the soil radon level of a site within a deviation of +/-30%. Direct in situ soil permeability measurements exhibited, however, large variations even within an area of only 10 x 10 m(2). Considering such large variations and the weight of the equipment, soil permeability can be determined by direct measurements whenever possible or by other qualitative evaluation methods for sites that are hard to access with heavy equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.