Global hybrid simulations of energetic particle effects on the n=1 internal kink mode have been carried out for tokamaks. For the Internationa Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis Editors et al, Nucl. Fusion 39, 2137.], it is shown that alpha particle effects are stabilizing for the internal kink mode. However, the elongation of ITER reduces the stabilization effects significantly. Nonlinear simulations of the precessional drift fishbone instability for circular tokamak plasmas show that the mode saturates due to flattening of the particle distribution function near the resonance region. The mode frequency chirps down rapidly as the flattening region expands radially outward. Fluid nonlinearity reduces the saturation level.
Mature seeds of Glycine max (L.) Merr. contain two major storage proteins, a glycosylated 7S protein (conglycinin) and a non-glycosylated 11S protein (glycinin). Accumulation of these proteins and their mRNAs during seed development in cv. Provar was studied by SDS polyacrylamide gel electrophoresis and by "Northern" (DNA-RNA) hybridization. The 11S acidic and basic subunits and the 7S α' and α subunits began to accumulate 18-20 d after pollination, shortly after the termination of cell division in developing cotyledons, whereas the 7S β and 11S A-4 subunits were not detected until one to two weeks later, during the maturation phase of development. Messenger RNAs for 7S and 11S proteins were first detected 14-18 d after pollination, several days before the accumulation of storage proteins. Extracts from embryonic axes contained reduced levels of the 7S α subunit, very little 11S protein, no detectable 7S β or 11S A-4 subunits, and an additional 7S subunit not found in cotyledons. Soybean axes and cotyledons therefore differ in their synthesis of seed storage proteins.
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no “transport shortfall”). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs∼0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST collisionality regime, is predicted.
In order to study the properties of short carbon arcs, a self-consistent model was implemented into a CFD code ANSYS-CFX. The model treats the transport of heat and electric current in the plasma and electrodes in a coupled manner and accounts for gas convection in the chamber. Multiple surface processes at the electrodes are modeled, including the formation of space-charge limited sheaths, ablation and deposition of carbon, and emission and absorption of radiation and electrons. The simulations show that the arc is constricted near the cathode and anode front surfaces, leading to the formation of electrode spots. The cathode spot is a well-known phenomenon, and mechanisms of its formation were reported elsewhere. However, the anode spot formation mechanism discovered in this work was not previously reported. We conclude that the spot formation is not related to plasma instability, as commonly believed in the case of constricted discharge columns, but rather occurs due to the highly nonlinear nature of heat balance in the anode. We additionally demonstrate this property with a reduced anode heat transfer model. We also show that the spot size increases with the arc current. This anode spot behavior was also confirmed in our experiments. Due to the anode spot formation, a large gradient of carbon gas density occurs near the anode, which drives a portion of the ablated carbon back to the anode at its periphery. This can consequently reduce the total ablation rate. Simulation results also show that the arc can reach the local chemical equilibrium state in the column region, while the local thermal equilibrium state is not typically achieved for experimental conditions. It shows that it is important to account for different electron and gas temperatures in the modeling of short carbon arcs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.