Abstract. The XMM-Newton Observatory is a cornerstone mission of the European Space Agency's Horizon 2000 programme, and is the largest scientific satellite it has launched to date. This paper summarises the principal characteristics of the Observatory which are pertinent to scientific operations. The scientific results appearing in this issue have been enabled by the unprecedentedly large effective area of the three mirror modules, which are briefly described. The in-orbit performance and preliminary calibrations of the observatory are briefly summarised. The observations from the XMM-Newton calibration and performance verification phase, which are public and from which most papers in this issue have been derived, are listed. The flow of data from the spacecraft, through the ground segment, to the production of preliminary science products supplied to users is also discussed.
Abstract. The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM-Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (v ∼ 1400 km s −1 FWHM) absorption lines from highly ionized elements including hydrogen-and helium-like carbon, nitrogen, oxygen, and neon, and several iron L-shell ions (Fe xvii-xx). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around λ = 16−17Å identified as an unresolved transition array (UTA) of 2p-3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O vii edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from at least two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.
drive the ultraviolet/optical variations. However, the medium energy X-ray NVA is 2-4 times that in the ultraviolet, and the single-epoch, absorption-corrected X-ray/γ-ray luminosity is only about 1/3 that of the ultraviolet/optical/infrared, suggesting that at most ∼1/3 of the total low-energy flux could be reprocessed high-energy emission.The strong wavelength dependence of the ultraviolet NVAs is consistent with an origin in an accretion disk, with the variable emission coming from the hotter inner regions and non-variable emission from the cooler outer regions. These data, when combined with the results of disk fits, indicate a boundary between these regions near a radius of order R ≈ 0.07 lt-day. No interband lag would be expected as reprocessing (and thus propagation between regions) need not occur, and the orbital time scale of ∼1 day is consistent with the observed variability time scale. However, such a model does not immediately explain the good correlation between ultraviolet and X-ray variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.