Platelets are anuclear cytoplasmic fragments essential for blood clotting and wound healing. Despite much speculation, the factors determining their life span in the circulation are unknown. We show here that an intrinsic program for apoptosis controls platelet survival and dictates their life span. Pro-survival Bcl-x(L) constrains the pro-apoptotic activity of Bak to maintain platelet survival, but as Bcl-x(L) degrades, aged platelets are primed for cell death. Genetic ablation or pharmacological inactivation of Bcl-x(L) reduces platelet half-life and causes thrombocytopenia in a dose-dependent manner. Deletion of Bak corrects these defects, and platelets from Bak-deficient mice live longer than normal. Thus, platelets are, by default, genetically programmed to die by apoptosis. The antagonistic balance between Bcl-x(L) and Bak constitutes a molecular clock that determines platelet life span: this represents an important paradigm for cellular homeostasis, and has profound implications for the diagnosis and treatment of disorders that affect platelet number and function.
Cytopenias are key prognostic indicators of life-threatening infection, contributing to immunosuppression and mortality. Here we define a role for Caspase-1-dependent death, known as pyroptosis, in infection-induced cytopenias by studying inflammasome activation in hematopoietic progenitor cells. The NLRP1a inflammasome is expressed in hematopoietic progenitor cells and its activation triggers their pyroptotic death. Active NLRP1a induced a lethal systemic inflammatory disease that was driven by Caspase-1 and IL-1β but was independent of apoptosis-associated speck-like protein containing a CARD (ASC) and ameliorated by IL-18. Surprisingly, in the absence of IL-1β-driven inflammation, active NLRP1a triggered pyroptosis of hematopoietic progenitor cells resulting in leukopenia in the steady state. During periods of hematopoietic stress induced by chemotherapy or lymphocytic choriomeningitis virus (LCMV) infection, active NLRP1a caused prolonged cytopenia, bone marrow hypoplasia and immunosuppression. Conversely, NLRP1-deficient mice showed enhanced recovery from chemotherapy and LCMV infection, demonstrating that NLRP1 acts as a cellular sentinel to alert Caspase-1 to hematopoietic and infectious stress.
Drosophila melanogaster occurs in diverse climatic regions and shows opposing clinal changes in resistance to heat and resistance to cold along a 3000 km latitudinal transect on the eastern coast of Australia. We report here on variation at a polymorphic 8 bp-indel site in the heat shock hsr-omega gene that maps to the right arm of chromosome 3. The frequency of the genetic element marked by the L form of the gene was strongly and positively associated with latitude along this transect, and latitudinal differences in L frequency were robustly associated with latitudinal differences in maximum temperature for the hottest month. On a genetic background mixed for genes from each end of the cline a set of 10 lines was derived, five of which were fixed for the L marker, the absence of In(3R)P and 12 kb of repeats at a second polymorphic site at the 3 0 end of hsr-omega, and five that were fixed for the S marker, In(3R)P and 15 kb of hsromega repeats. For two different measures of heat tolerance S lines outperformed L lines, and for two different measures of cold tolerance L lines outperformed S lines. These data suggest that an element on the right arm of chromosome 3, possibly In(3R)P, confers heat resistance but carries the trade-off of also conferring susceptibility to cold. This element occurs at high frequency near the equator. The alternate element on the other hand, at high frequency at temperate latitudes, confers cold resistance at the cost of heat susceptibility.
MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix ‘brace’ that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.