The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.
In-Situ Resource Utilization (ISRU) facilitates planetary exploration by drawing needed resources, such as water, from the local environment. This work presents a 3-step in-situ water recovery approach: 1) mining the soil using deep fluted auger, 2) extracting the water from soil within the flutes, and 3) discarding the soil before transporting the water to a main storage facility. Drilling in icy soil and ice has already been demonstrated in vacuum chambers by the authors. This paper focuses on the second critical step: water extraction from the icy soil or ice within the deep flutes. This paper reports on tests demonstrating efficient collection of water from ice-bearing soil under Mars conditions. The water recovery Mobile In Situ Water Extractor (MISWE) breadboard collected as much as 92% of the water initially present in the soil, and required as little as 0.9 Whr/g of energy (80% efficient compared to theoretical). The extraction process took approximately 40 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.