Surveys by digital side-scan sonar, RoxAnnTM acoustic ground discrimination systems, multibeam echosounder and a sub-bottom profiling system showed that a Modiolus modiolus reef, in the Irish Sea off Pen Llŷn, north-west Wales, had a distinctive morphology and acoustic characteristics. The extent of the reef could therefore be determined and the benthic structure reliably mapped. The biogenic reef is in an area with moderately strong tidal currents and overlays lag gravel and cobbles with patchy sand veneers. The mussels form an undulating surface, orientated perpendicular to the current, with an average wavelength of 11.7 m and amplitude of 0.24 m that is significantly different from the surrounding seabed. Reef deposits reach a thickness of 1 m on top of the underlying lag gravels. The characteristic reef surface morphology helps distinguish the reef from the surrounding seabed on side-scan sonar and multibeam echosounder records and the undulations create the spatial complexity that influences the small-scale distribution of the associated epifauna, and infauna, reported in papers II and III of this series. The M. modiolus reef was recorded in the same location 40 y ago and has probably persisted there for over 150 y. Monitoring implications are discussed.
Fishing with bottom towed gear is widely considered an invasive form of fishing in terms of its impacts upon seabed habitats and fauna. Fishery closures or marine protected areas provide baseline conditions against which to assess the response to the removal of fishing disturbance and thus shed light on their use as fisheries management tools. We conducted repeat underwater camera surveys inside a recently established area that is permanently closed to scallop fishing and a seasonally fished area in Cardigan Bay, UK, to test for differences in scallop abundance and epibenthic community structure and to examine recovery processes over a 23 mo study period. Changes in scallop density and epifaunal diversity and community composition were primarily driven by seasonal fluctuations; no differences were found between the permanently closed area and the seasonally fished area. Temporal changes in epibenthic community inside the permanently closed area were not related to recovery processes associated with the cessation of scallop dredging. Sediment composition and bedforms shifted between surveys, suggesting that this community is exposed to a dynamic environment. It is likely that scallop dredging at the present levels of fishing may be insufficient to induce changes large enough to be detected in the presence of strong natural disturbance. We highlight the importance of considering the physical nature and dynamics of the environment and the nature of the species concerned throughout the process of designating closed areas, to avoid negative impacts on fisheries and limited conservation benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.