Global polarization of Λ hyperons has been measured to be of the order of a few tenths of a percent in Au+Au collisions at √ s N N = 200 GeV, with no significant difference between Λ andΛ.These new results reveal the collision energy dependence of the global polarization together with the results previously observed at √ s N N = 7.7 -62.4 GeV and indicate noticeable vorticity of the medium created in non-central heavy-ion collisions at the highest RHIC collision energy. The signal is in rough quantitative agreement with the theoretical predictions from a hydrodynamic model and from the AMPT (A Multi-Phase Transport) model. The polarization is larger in more peripheral collisions, and depends weakly on the hyperon's transverse momentum and pseudorapidity η H within |η H | < 1. An indication of the polarization dependence on the event-by-event charge asymmetry 3 is observed at the 2σ level, suggesting a possible contribution to the polarization from the axial current induced by the initial magnetic field. PACS numbers: 25.75.-q, 25.75.Ld
We calculate the cross section and transverse-momentum (P ⊥ ) distribution of the Breit-Wheeler process in relativistic heavy-ion collisions and their dependence on collision impact parameter (b). To accomplish this, the Equivalent Photon Approximation (EPA) was generalized in a more differential way compared to the approach traditionally used for inclusive collisions. In addition, a lowest-order QED calculation with straightline assumption was performed as a standard baseline for comparison. The cross section as a function of b is consistent with previous calculations using the equivalent one-photon distribution function. Most importantly, the P ⊥ shape from this model is strongly dependent on impact parameter and can quantitatively explain the P ⊥ broadening observed recently by RHIC and LHC experiments. This broadening effect from the initial QED field strength should be considered in studying possible trapped magnetic field and multiple scattering in a Quark-Gluon Plasma (QGP). The impact-parameter sensitive observable also provides a controllable tool for studying extreme electromagnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.