Abstract-This paper presents a dc arc fault model to simplify the study of a critical issue in dc microgrids: series faults. The model is derived from a hyperbolic approximation of observed arc voltage and current patterns, which permit analyzing the arc in terms of its resistance, power, energy, and quenching condition. Recent faults staged by the authors on a dc microgrid yielded enough fault data to develop an arc model. These faults were of three types: constant-gap speed, fixed-gap distance, and accelerated gap. The results in this paper compare experimental and simulation results for the three fault types. It is concluded that because the instantaneous voltage, current, power, and energy waveforms produced by the model agree well with experimental results, the model is suitable for transient simulations.
This paper reports on the progress of detailed MatLab/Simulink models of a destroyer class ship service electric power distribution system that have been developed to evaluate the performance of battery, flywheel, and capacitor energy storage in support of laser weapons. The models allow the user to develop comparative studies of the three energy storage systems in regard to several relevant metrics that can be used for their discrimination. Examples of some of these results based on the simulations are given.
Abstract-Modern technology combined with the desire to minimize the size and weight of a ship's power system are leading to renewed interest in more electric or all electric ships. An important characteristic of the emerging ship power system is an increasing level of load variability, with some future pulsed loads requiring peak power in excess of the available steadystate power. This inevitably leads to the need for some additional energy storage beyond that inherent in the fuel.With the current and evolving technology, it appears that storage will be in the form of batteries, rotating machines, and capacitors. All of these are in use on ships today and all have enjoyed significant technological improvements over the last decade. Moreover all are expected to be further enhanced by today's materials research. A key benefit of storage is that, when it can be justified for a given load, it can have additional beneficial uses such as ride-through capability to restart a gas turbine if there is an unanticipated power loss; alternatively, storage can be used to stabilize the power grid when switching large loads. Knowing when to stage gas turbine utilization versus energy storage is a key subject in this paper. The clear need for storage has raised the opportunity to design a comprehensive storage system, sometimes called an energy magazine, that can combine intermittent generation as well as any or all of the other storage technologies to provide a smaller, lighter and better performing system than would individual storage solutions for each potential application.
-This paper presents advancements in induction motor endring design to overcome mechanical limitations and extend the operating speed range and joint reliability of induction machines.A novel end ring design met the challenging mechanical requirements of this high speed, high temperature, power dense application, without compromising electrical performance. Analysis is presented of the advanced endring design features including a non uniform cross section, hoop stress relief cuts, and an integrated joint boss, which reduced critical stress concentrations, allowing operation under a broad speed and temperature design range. A generalized treatment of this design approach is presented comparing the concept results to conventional design techniques. Additionally, a low temperature joining process of the bar/end ring connection is discussed that provides the required joint strength without compromising the mechanical strength of the age hardened parent metals. A description of a prototype 2 MW, 15,000 rpm flywheel motor generator embodying this technology is presented.
Abstract-The University of Texas at Austin Center for Electromechanics (UT-CEM) is currently developing anAdvanced Locomotive Propulsion System (ALPS) as part of the Next Generation High-Speed Rail program sponsored by the Federal Railroad Administration (FRA). The ALPS consists of a gas turbine and synchronous alternator, combined with an induction motor coupled flywheel energy storage system (FESS). The prime power and FESS are coupled through a DC power link, as is the conventional AC traction drive system. The energy system includes auxiliary support systems to provide thermal management, bearing systems, controls, and power conversions. The energy exchange capacity of the flywheel is 360 MJ (100 kWhr). This paper presents the requirements, considerations, and design of the integrated turbine and flywheel power system. Significant development efforts have gone into the high-speed synchronous alternator, the flywheel power converter, the highspeed induction machine for the flywheel, the flywheel itself and its magnetic bearings. The fabrication status of these components and testing progress is also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.