The pulse forming line (PFL) is the key part of the intense electron-beam accelerators (IEBA), which determines the quality and characteristic of the output beam current of the IEBA. Compared with the accelerator with traditional Blumlein line, an IEBA based on strip spiral Blumlein line (SSBL) can increase the duration of the output pulse in the same geometrical dimension. But the disadvantage of the SSBL is that the output voltage waveform at the matched load may be distorted, which influences the electron beam quality. In this paper, according to the electromagnetic theory, formulas for calculating the main electric parameters of SSBL (inductance, capacitance, transmission time, and characteristic impedance) are deduced. The effect of the geometric parameters of SSBL on the slowing coefficient is analyzed. The designed condition of SSBL for the output ideal voltage pulse in the matched load is obtained by theoretical analysis. Furthermore, the Karat code is used to simulate the output voltage waveform of SSBL on the matched load for different spiral angels. At last, a couple of contrastive experiments are performed on an electron-beam accelerator based on the SSBL with water dielectric. The experimental results agree with the theoretical and simulated results.
An electron-beam accelerator based on spiral water pulse forming line which consists of a primary storage capacitor system, an air core spiral strip transformer, a spiral pulse forming line of water dielectric, and a field-emission diode, is described. The experimental results showed that the diode voltage is more than 500 kV, the electron beam current of diode is about 24 kA, and the pulse duration is about 200 ns. The main parameters of the accelerator were calculated theoretically. The distributions for electrical field in the pulse forming line were obtained by the simulations. In addition, the process of the accelerator charging a spiral pulse forming line was simulated through the Pspice software to get the waveforms of charging voltage of pulse forming line, the diode voltage and diode current of accelerator. The theoretical and simulated results agree with the experimental results. This accelerator is very compact and works stably and reliably.
For one kind of high current diodes composed of a ceramic-metal welding vacuum interface, the electrical design was presented. For compactness, a radial type insulator and a cone-column anode crust were adopted. The shielding methods around cathode and anode region were applied to mitigate the influence of welding solder to vacuum flashover. Finite Element Analysis (FEA) simulation results indicated that by adjusting the anode outline and shielding shape, the electric fields along the ceramic were well distributed. High voltage test was conducted on a long-pulse accelerator and experimental results confirm the theoretic design: the diode can stably hold on 400 kV and 200 ns voltage pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.