Even after 50 years of development, narrowband high-power microwave (HPM) source technologies remain the focus of much research due to intense interest in innovative applications of HPMs in fields such as directed energy, space propulsion, and high-power radar. A few decades ago, the main aim of investigations in this field was to enhance the output power of a single HPM source to tens or hundreds of gigawatts, but this goal has proven difficult due to physical limitations. Therefore, recent research into HPM sources has focused on five main targets: phase locking and power combination, high power efficiency, compact sources with a low or no external magnetic field, high pulse energy, and high-power millimeter-wave generation. Progress made in these aspects of narrowband HPM sources over the last decade is analyzed and summarized in this paper. There is no single type of HPM source capable of excellent performance in all five aspects. Specifically, high pulse energy cannot be achieved together with high power efficiency. The physical difficulties of high power generation in the millimeter wave band are discussed. Semiconductor-based HPM sources and metamaterial (MTM) vacuum electron devices (VEDs) are also commented on here. Semiconductor devices have the advantage of smart frequency agility, but they have low power density and high cost. MTM VEDs have the potential to be high power efficiency HPM sources in the low frequency band. Moreover, problems relating to narrowband HPM source lifetime and stability, which are the important determinants of the real-world applicability of these sources, are also discussed.
Ferroptosis, a novel form of regulated cell death, is characterized by imbalance of intracellular iron and redox systems, resulting from overgeneration of toxic lipid peroxidation products. In recent years, the verified crucial role of ferroptosis has been widely concerned in rudimentary pathogenesis and development of various acute and chronic kidney disease (CKD), comprehending the potential patterns of cell death can afford more reliable bases and principles for treatment and prevention of renal disease. In this review, the regulatory mechanisms of ferroptosis were introduced and the important roles of ferroptosis in diverse renal diseases such as acute kidney injury, CKD, and renal fibrosis were outlined to illuminate the potential of restraining ferroptosis in treatment and prevention of kidney disease.
As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a ∼300 kV, ∼6 ns, ∼100 Ω, and 1–300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibrium pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.