Atypical meningiomas have poor local control with emerging literature indicating the use of radiosurgery in treatment. The purpose of this study was to evaluate clinical outcomes including local control and failure pattern after Gamma Knife radiosurgery (GKRS) and factors that may affect these outcomes. Between 1999 and 2008, 24 patients were treated with GKRS as either primary or salvage treatment for pathologically proven atypical meningiomas. Treatment failures were determined by serial magnetic resonance imaging. A median marginal dose of 14 Gy was used (range 10.5–18 Gy). Overall local control rates at 1, 2, and 5 years were 75, 51, and 44%, respectively. With median follow-up time of 42.5 months, 14 of 24 patients experienced a treatment failure at time of last follow-up. Eight recurrences were in-field, four were marginal failures, and two were distant failures. Wilcoxon analysis revealed that the conformality index (CI) was a significant predictor of local recurrence (P = 0.04). CI did not predict for distant recurrences (P = 0.16). On multivariate analysis evaluating factors predicting progression free survival, dose >14 Gy was found to be statistically significant (P = 0.01). There appears to be a dose response using GKRS beyond 14 Gy but given the suboptimal local control rates in this study, higher doses may still be needed to obtain better local control.
Purpose
In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed.
Conclusions
Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members.
The American Association of Physicists in Medicine (AAPM) formed Task Group 178 (TG-178) to perform the following tasks: review in-phantom and in-air calibration protocols for gamma stereotactic radiosurgery (GSR), suggest a dose rate calibration protocol that can be successfully utilized with all gamma stereotactic radiosurgery (GSR) devices, and update quality assurance (QA) protocols in TG-42 (AAPM Report 54, 1995) for static GSR devices. The TG-178 report recommends a GSR dose rate calibration formalism and provides tabulated data to implement it for ionization chambers commonly used in GSR dosimetry. The report also describes routine mechanical, dosimetric, and safety checks for GSR devices, and provides treatment process quality assurance recommendations. Sample worksheets, checklists, and practical suggestions regarding some QA procedures are given in appendices. The overall goal of the report is to make recommendations that help standardize GSR physics practices and promote the safe implementation of GSR technologies.
A three-dimensional dose computation model employing a finite-size, diverging, pencil beam has been developed and is demonstrated for Cobalt-60 gamma rays. The square cross-section pencil beam is simulated in a semi-infinite water phantom by convolving the pencil beam photon fluence with the Monte Carlo point dose kernel for Cobalt-60. This finite-size pencil beam is calculated one time and becomes a new data base with which to build larger beams by two-dimensional superposition. The pencil beam fluence profile, angle correction for beam divergence, the Mayneord inverse square correction, radial and angular sampling rates, error propagation, and computation time have been investigated and are reported. Radial and angular sampling rates have a great effect on accuracy and their appropriate selection is important. Percent depth doses calculated by finite-size pencil beam superposition are within 1% of values calculated by full convolution and the agreement with values from the literature is within 6%. The latter disagreement is shown to be due to a low-energy photon component which is not modeled in other calculations. Computation time measurements show the pencil beam method to be faster than full convolution and one implementation of the differential-scatter-air-ratio (dSAR) method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.