Increased protein intake, at the expense of maltodextrin, lowers BP in overweight adults with upper-range prehypertension and grade 1 hypertension. This trial was registered at www.trialregister.nl as NTR 1362.
The replacement of dietary carbohydrates with proteins can lower blood pressure (BP), but the mechanisms remain unclear. This randomized, double-blind, parallel-group study aimed to compare 12-h postprandial sympathetic and hemodynamic responses after high-protein (HP) meals and high-carbohydrate (HC) meals. Fifty-two men and women with untreated elevated BP were tested on d 1 and after 4 wk of supplementation [3 × 20 g protein (HP) or maltodextrin (HC) per day]. No between-group differences were found in postprandial plasma norepinephrine on d 1 and at wk 4. On d 1, postprandial mean arterial pressure (MAP) decreased more in the HC group than in the HP group (P = 0.002). This difference was not present at 4 wk, because the postprandial decline in MAP tended to become larger in the HP group after 4 wk of supplementation (P = 0.07). On both test days, postprandial total peripheral resistance tended to decrease more in the HC group (P < 0.08). After 4 wk of supplementation, cardiac output tended to increase more in the HC group (P = 0.08). In conclusion, ingestion of an HP diet induced a smaller decrease in BP on d 1 than did ingestion of an HC diet. This difference disappeared after 4 wk due to a more pronounced decrease in BP in the HP group after 4 wk than on d 1. These findings cannot explain the BP-lowering effect ascribed to dietary proteins.
Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of maltodextrin were compared with those to the ingestion of sucrose and a protein mix. We hypothesised that lower postprandial total peripheral resistance (TPR) and BP levels would be accompanied by higher plasma concentrations of nitric oxide, insulin, glucagon-like peptide 1 (GLP-1) and glucagon. On separate occasions, six meals were tested in a randomised order in forty-eight overweight or obese adults with untreated elevated BP. Postprandial responses of TPR, BP and plasma concentrations of insulin, glucagon, GLP-1 and nitrite, nitroso compounds (RXNO) and S-nitrosothiols (NO x ) were measured for 4 h. No differences were observed in TPR responses. Postprandial BP levels were higher after the ingestion of the egg-white-protein meal than after that of meals containing the other two proteins (P#0·01). The ingestion of the pea-protein meal induced the highest NO x response (P#0·006). Insulin and glucagon concentrations were lowest after the ingestion of the egg-white-protein meal (P# 0·009). Postprandial BP levels were lower after the ingestion of the maltodextrin meal than after that of the protein mix and sucrose meals (P#0·004), while postprandial insulin concentrations were higher after the ingestion of the maltodextrin meal than after that of the sucrose and protein mix meals after 1 -2 h (P#0·0001). Postprandial NO x , GLP-1 and glucagon concentrations were lower after the ingestion of the maltodextrin meal than after that of the protein mix meal (P#0·008). In conclusion, different protein and carbohydrate sources induce different postprandial BP-related responses, which may be important for BP management. Lower postprandial BP levels are not necessarily accompanied by higher NO x , insulin, glucagon or GLP-1 responses.
Endothelial dysfunction (ED) and low-grade inflammation (LGI) have a role in the development of CVD. The two studies reported here explored the effects of dietary proteins and carbohydrates on markers of ED and LGI in overweight/obese individuals with untreated elevated blood pressure. In the first study, fifty-two participants consumed a protein mix or maltodextrin (3 × 20 g/d) for 4 weeks. Fasting levels and 12 h postprandial responses of markers of ED (soluble intercellular adhesion molecule 1 (sICAM), soluble vascular cell adhesion molecule 1 (sVCAM), soluble endothelial selectin and von Willebrand factor) and markers of LGI (serum amyloid A, C-reactive protein and sICAM) were evaluated before and after intervention. Biomarkers were also combined into mean Z-scores of ED and LGI. The second study compared 4 h postprandial responses of ED and LGI markers in forty-eight participants after ingestion of 0·6 g/kg pea protein, milk protein and egg-white protein. In addition, postprandial responses after maltodextrin intake were compared with a protein mix and sucrose. The first study showed significantly lower fasting ED Z-scores and sICAM after 4 weeks on the high-protein diet (P ≤ 0·02). The postprandial studies found no clear differences of ED and LGI between test meals. However, postprandial sVCAM decreased more after the protein mix compared with maltodextrin in both studies (P ≤ 0·04). In conclusion, dietary protein is beneficial for fasting ED, but not for fasting LGI, after 4 weeks of supplementation. On the basis of Z-scores, postprandial ED and LGI were not differentially affected by protein sources or carbohydrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.