It has previously been shown that insulin-induced stimulation of glucose uptake and glycogen synthesis requires activation of phosphatidylinositol-3-kinase (PI3kinase). Insulin also induces formation of RasGTP in cells and various studies have yielded inconsistent data with respect to the contribution of signalling pathways activated by RasGTP, to insulin-stimulated glucose uptake and glycogen synthesis. We have examined the requirement of RasGTP-mediated signalling for these insulin responses by expression of a dominant negative mutant of Ras (RasN17) in cells by vaccinia virus mediated gene transfer. This Ras-mutant abrogates the signalling pathways mediated by endogenous RasGTP. Subsequently, the ability of insulin to stimulate 2-deoxyglucose uptake and glycogen was examined. We observed that expression of RasN17 in 3T3L1 adipocytes did not affect the stimulation of hexose uptake by insulin. Similarly, expression of RasN17 in A14 cells, an NIH 3T3-derived cell line with high expression of insulin receptors, did not affect insulin-induced stimulation of glycogen synthesis. In both cell lines, insulin-induced phosphorylation of Mapkinase (Erk1,2) was abrogated after expression of RasN17, demonstrating the functional interference by RasN17 with signalling mediated by endogenous RasGTP. Wortmannin, an inhibitor of PI3kinase, abolished dose-dependently the insulin-induced stimulation of hexose uptake and glycogen synthesis without an effect on RasGTP levels in both cell types. We conclude that stimulation of glucose transport and glycogen synthesis by insulin occurs independently of RasGTP-mediated signalling.
While normal hematopoietic progenitor cells are dependent on colony-stimulating factors for in vitro proliferation, myeloid leukemic cells are frequently factor-independent. In this study we investigated several signalling intermediates of the Ras-Erk1,2 pathway which may be involved in the development of growth factor independence. In the growth factor independent cell line KG1, an extremely short activation pattern of Erk1,2 with a maximum at 30 s was observed in response to FBS. In contrast, stimulation of the IL-3 receptor in AML193 cells resulted in a transient Erk activation peaking at 5 min and returning to base levels after 15 min. Although the Erk activation in KG1 cells is short-lived, using the MEK inhibitor PD98059, we demonstrated that Erk phosphorylation is essential for proliferation of these cell lines. We also detected major differences in Shc phosphorylation between factor-dependent and -independent cells. These data suggest that Erk activation is essential for proliferation of growth factor-dependent and -independent leukemic cells. The minimal Erk activation observed in KG1 cells in response to serum is sufficient for mitogenesis of these cells.
The families of tyrosine and serine/threonine kinases exhibit shared clusters of conserved amino acid residues. Some conserved residues are confined to the family of tyrosine kinases (TKs), like Tyr at position 1210 in the insulin receptor. Nearly all TKs have at this position Tyr, whereas Ser/Thr kinases generally have Phe at this site. The three-dimensional structure of the insulin receptor TK domain shows Tyr1210 to be located in the cleft, below bound ATP, in a region which potentially contributes to substrate binding. We have examined whether this specific Tyr residue contributes to the generation of TK-specific responses, such as Tyr phosphorylation of Shc, activation of Ras and Erk1,2, and stimulation of DNA synthesis. In addition, we have examined the contribution of Tyr1210 to insulin receptor-specific responses as Tyr phosphorylation of IRS1, stimulation of glycogen synthesis, and dephosphorylation of focal adhesion kinase (FAK). Wild-type and a mutant insulin receptor, in which Tyr1210 was replaced by Phe, were stably expressed in CHO cells, and clones expressing similar numbers of insulin receptors were selected. It was found that replacement of Tyr1210 by Phe resulted in a receptor which was nearly inactive in inducing dephosphorylation of FAK. The mutant receptor was able to induce RasGTP formation, glycogen synthesis, and activation of phosphatidylinositol 3-kinase, though the magnitude of stimulation of some responses was decreased. These findings indicate that Tyr1210 is not essential for the induction of tyrosine kinase-specific responses, such as activation of the Shc/Ras/Erk1,2 pathway and mitogenicity. On the other hand, the abrogation of insulin-induced FAK dephosphorylation indicates that Tyr1210 is involved in coupling of the activated receptor to some downstream targets. Thus, Tyr1210 may fine tune the signal generated by the activated insulin receptor.
Human Intestine 407 cells respond to hypo-osmotic stress with a rapid stimulation of compensatory ionic conductances accompanied by a transient increase in the activity of the extracellularsignal-regulated protein kinases Erk-1 and Erk-2. In this study, we examined the upstream regulators of hypotonicity-induced Erk-1\Erk-2 activation and their possible role in cell-volume regulation. The hypotonicity-provoked Erk-1\Erk-2 activation was greatly reduced in cells pretreated with the specific mitogen-activated\Erk-activating kinase inhibitor PD098059 and was preceded by a transient stimulation of Raf-1. Pretreatment of the cells with PMA, GF 109203X, wortmannin or Clostridium botulinum C3 exoenzyme did not appreciably affect the hypotonicityprovoked Erk-1\Erk-2 stimulation, suggesting the osmosensitive signalling pathway to be largely independent of protein kinase C
Post-receptor signalling molecules that convey the signal from the activated insulin receptor to the actual process of Glut4 translocation and hexose uptake are poorly understood. Various studies have suggested a requirement of the lipid kinase phosphatidylinositol-3 kinase (PI3-kinase) in this process. PI3kinase regulates the activation status of the small GTP-binding protein Rac which, in turn, is able to activate another G-protein Rho. Rac and Rho are known to regulate the structure of the membrane- and cytoplasmic actin-cytoskeleton. We have examined whether Rac and Rho transfer the signals generated by PI3kinase towards insulin-stimulated hexose uptake. For that purpose, we expressed in 3T3-L1 adipocytes the dominant-negative mutant of RacN17 using vaccinia virus-mediated gene transfer. The expression levels of the RacN17 protein were monitored by Western blotting. The abrogation of endogenous Rac signalling by expression of RacN17 was inferred from the observed loss of arachidonic acid release in response to insulin. Basal and insulin-stimulated hexose transport were not affected by expression of the RacN17 mutant. A possible contribution of Rho.GTP to stimulation of hexose uptake was examined by pre-incubation of adipocytes with lysophosphatidic acid (LPA). We observed a profound effect of LPA on the structure of the cytoskeleton and on the phosphorylation of Focal Adhesion Kinase (p125FAK), indicating that 3T3-L1 adipocytes respond to LPA and that Rho was activated by LPA. However, no effect was detected on the basal or on the insulin-stimulated hexose transport. We conclude that Rac and Rho are unlikely to be involved in insulin-stimulated hexose transport, suggesting a possible contribution of other signalling pathways, downstream of PI3kinase to this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.