Because most colorectal carcinomas appear to arise from adenomas, studies of different stages of colorectal neoplasia may shed light on the genetic alterations involved in tumor progression. We looked for four genetic alterations (ras-gene mutations and allelic deletions of chromosomes 5, 17, and 18) in 172 colorectal-tumor specimens representing various stages of neoplastic development. The specimens consisted of 40 predominantly early-stage adenomas from 7 patients with familial adenomatous polyposis, 40 adenomas (19 without associated foci of carcinoma and 21 with such foci) from 33 patients without familial polyposis, and 92 carcinomas resected from 89 patients. We found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas. However, ras mutations were found in only 9 percent of adenomas under 1 cm in size. Sequences on chromosome 5 that are linked to the gene for familial adenomatous polyposis were not lost in adenomas from the patients with polyposis but were lost in 29 to 35 percent of adenomas and carcinomas, respectively, from other patients. A specific region of chromosome 18 was deleted frequently in carcinomas (73 percent) and in advanced adenomas (47 percent) but only occasionally in earlier-stage adenomas (11 to 13 percent). Chromosome 17p sequences were usually lost only in carcinomas (75 percent). The four molecular alterations accumulated in a fashion that paralleled the clinical progression of tumors. These results are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumorigenesis.
Rap1 is a small, Ras-like GTPase that was first identified as a protein that could suppress the oncogenic transformation of cells by Ras. Rap1 is activated by several extracellular stimuli and may be involved in cellular processes such as cell proliferation, cell differentiation, T-cell anergy and platelet activation. At least three different second messengers, namely diacylglycerol, calcium and cyclic AMP, are able to activate Rap1 by promoting its release of the guanine nucleotide GDP and its binding to GTP. Here we report that activation of Rap1 by forskolin and cAMP occurs independently of protein kinase A (also known as cAMP-activated protein kinase). We have cloned the gene encoding a guanine-nucleotide-exchange factor (GEF) which we have named Epac (exchange protein directly activated by cAMP). This protein contains a cAMP-binding site and a domain that is homologous to domains of known GEFs for Ras and Rap1. Epac binds cAMP in vitro and exhibits in vivo and in vitro GEF activity towards Rap1. cAMP strongly induces the GEF activity of Epac towards Rap1 both in vivo and in vitro. We conclude that Epac is a GEF for Rap1 that is regulated directly by cAMP and that Epac is a new target protein for cAMP.
Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate the activity of small guanine nucleotide-binding (G) proteins to control cellular functions. In general, GEFs turn on signaling by catalyzing the exchange from G-protein-bound GDP to GTP, whereas GAPs terminate signaling by inducing GTP hydrolysis. GEFs and GAPs are multidomain proteins that are regulated by extracellular signals and localized cues that control cellular events in time and space. Recent evidence suggests that these proteins may be potential therapeutic targets for developing drugs to treat various diseases, including cancer.
RNAi Double-stranded RNAs (dsRNAs) were made using gld-2 cDNAs (pJK830, exons 2-8 or pJK831, exons 16-18) as templates. Young adults were either injected with 2 mg ml 21 gld-2 dsRNA or soaked in 10 ml of 2 mg ml 21 gld-2 dsRNA for 12 h at 20 8C or mock-treated by injection with M9 buffer. Embryos were collected at defined intervals after treatment and processed together. Poly(A) polymerase assayProteins were in vitro translated using the TNT coupled transcription-translation system (Promega), and assayed using buffer conditions essentially as described 26 . For scintillation counting, poly(A) (Roche) was used as substrate. For gel assays, we used RNA oligo, C 35 A 10 (Dharmacon), a 45-nucleotide and supplemental 1 mM MgCl 2 . Products were analysed on 12% sequencing gels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.