Changes in the formulation of emulsions obtained with the same proportions of drug and iodized oil change the distribution of iodized oil in the arterial tree, the location at which the drug is released, and the embolic effect.
Use of large-droplet water-in-oil emulsions limited lung uptake and increased tumor uptake of iodized oil after intraarterial hepatic injection in rabbits bearing VX2 tumors in the liver.
This study presents the effects of red blood cell (RBC) hyperaggregation on the blood flow and pressure in the rat mesentery and cremaster network. We exclusively studied in situ non-vasodilated organs, in order to maintain the physiological regulation mechanisms. Dextran 500 was injected at different concentrations to increase RBC aggregation. The aggregation rate was measured on very small blood samples with an erythroaggregameter (SEFAM) which evaluated the disaggregating shear stress (tau D) needed to break the RBC aggregates. Microscopic observations and laser Doppler velocimetry were used to quantify the flow rate. The plasmatic dextran concentration (C) increase had different correlated effects: for example, tau D increased from 3 dynes cm-2 (for the control sample) to 14 dynes cm-2 (for C = 75 microM L-1); the flow rate was reduced threefold and very large aggregates were observed in the venules; the arteriolar pressure increased while venular pressure decreased. In order to differentiate the effects of RBC hyperaggregation from those of plasma hyperviscosity (due to dextran 500) on microcirculatory blood flow, we injected an RBC antiaggregating drug (troxerutine) (50 or 100 mg kg-1 i.v.). The consequences were a high reduction for (tau D) (from 14 dynes cm(-2)-9 dynes cm-2), smaller aggregates and higher blood flow in the venules. No effect of troxerutine was observed on plasma viscosity (plasma control: 1.9 cP with or without troxerutine; plasma with dextran at C = 75 microM L-1: 2.45 cP with or without troxerutine). The results strongly suggest that RBC aggregation has a significant influence on blood flow rate in the microcirculatory network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.