Electrical operation of InGaN/GaN quantum-well heterostructure photonic crystal light-emitting diodes (PXLEDs) is demonstrated. A triangular lattice photonic crystal is formed by dry etching into the top GaN layer. Light absorption from the metal contact is minimized because the top GaN layers are engineered to provide lateral current spreading, allowing carrier recombination proximal to the photonic crystal yet displaced from the metal contact. The chosen lattice spacing for the photonic crystal causes Bragg scattering of guided modes out of the LED, increasing the extraction efficiency. The far-field radiation patterns of the PXLEDs are heavily modified and display increased radiance, up to ∼1.5 times brighter compared to similar LEDs without the photonic crystal.
Data are presented on the operation of thin-film flip-chip InGaN∕GaN multiple-quantum-well light-emitting diodes (LEDs). The combination of thin-film LED concept with flip-chip technology is shown to provide surface brightness and flux output advantages over conventional flip-chip and vertical-injection thin-film LEDs. Performance characteristics of blue, white, and green thin-film flip-chip 1×1mm2 LEDs are described. Blue (∼441nm) thin-film flip-chip LEDs are demonstrated with radiance of 191mW∕mm2sr at 1A drive, more than two times brighter than conventional flip-chip LEDs. An encapsulated thin-film flip-chip blue LED lamp is shown to have external quantum efficiency of 38% at forward current of 350mA. A white lamp based on a YAG:Ce phosphor coated device exhibits luminous efficacy of 60lm∕W at 350mA with peak efficiency of 96lm∕W at 20mA and luminance of 38Mcd∕m2 at 1A drive current. Green (∼517nm) devices exhibit luminance of 37Mcd∕m2 at 1A.
Vertically injected thin-film ultraviolet light-emitting diodes operating at 325 and 280nm are demonstrated. Low-temperature AlN interlayers allow crack-free growth of AlxGa1−xN with compositions up to x=0.53 on GaN-on-sapphire templates. The GaN layer allows laser-induced separation of the highly strained epi stack from the sapphire substrate with high yield. Cathode contacts are formed on nitrogen-face AlxGa1−xN (up to x=0.53) and allow vertical injection of current into the active region. Controlled roughening of the nitrogen-face AlxGa1−xN is also demonstrated through photoelectrochemical etching and results in >2.5× light extraction gain for 325 and 280nm devices.
Wavelength-shifted GaAs/AlGaAs Fabry-Pérot ridge waveguide lasers were fabricated by vacancy-enhanced quantum well disordering using dielectric cap annealing. 500 m long and 4 m wide Fabry-Pérot lasers with emission wavelengths selectively shifted by 20 nm were integrated with unshifted lasers on the same chip, characterized and further compared with lasers fabricated from as-grown material. These investigations showed that the absorption edge of a single-quantum well double heterostructure can be selectively blueshifted after epitaxial growth without compromising diode laser performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.