Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity--which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes--has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.
Articles you may be interested inGaAs-based room-temperature continuous-wave 1.59 μ m GaInNAsSb single-quantum-well laser diode grown by molecular-beam epitaxy Appl. Phys. Lett. 87, 231121 (2005); 10.1063/1.2140614Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs/AlGaAs quantum dots grown on a GaAs(100) substrate Appl.Room-temperature lasing at the wavelength of 1.31 m is achieved from the ground state of an InGaAs/GaAs quantum-dot ensemble. At 79 K, a very low threshold current density of 11.5 A/cm 2 is obtained at a wavelength of 1.23 m. The room-temperature lasing at 1.31 m is obtained with a threshold current density of 270 A/cm 2 using high-reflectivity facet coatings. The temperature-dependent threshold with and without high-reflectivity end mirrors is studied, and ground-state lasing is obtained up to the highest temperature investigated of 324 K.
Data are presented on the influence of p-type modulation doping on the gain characteristics of 1.3 μm InAs quantum dot lasers. The improvement in optical gain leads to very high characteristic temperatures for the lasing threshold that reach 161 K in the temperature range between 0 and 80 °C. 1.3 μm ground state lasing is obtained up to a temperature of 167 °C.
Data are presented on the operation of thin-film flip-chip InGaN∕GaN multiple-quantum-well light-emitting diodes (LEDs). The combination of thin-film LED concept with flip-chip technology is shown to provide surface brightness and flux output advantages over conventional flip-chip and vertical-injection thin-film LEDs. Performance characteristics of blue, white, and green thin-film flip-chip 1×1mm2 LEDs are described. Blue (∼441nm) thin-film flip-chip LEDs are demonstrated with radiance of 191mW∕mm2sr at 1A drive, more than two times brighter than conventional flip-chip LEDs. An encapsulated thin-film flip-chip blue LED lamp is shown to have external quantum efficiency of 38% at forward current of 350mA. A white lamp based on a YAG:Ce phosphor coated device exhibits luminous efficacy of 60lm∕W at 350mA with peak efficiency of 96lm∕W at 20mA and luminance of 38Mcd∕m2 at 1A drive current. Green (∼517nm) devices exhibit luminance of 37Mcd∕m2 at 1A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.